commit
84c3523c5a
@ -0,0 +1,238 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "nnpack.h"
|
||||
#include "paddle/function/ConvOp.h"
|
||||
|
||||
DEFINE_bool(nnpack_allocate_outside,
|
||||
false,
|
||||
"Allocate and free workspace memory outside the NNPACK interface.");
|
||||
DEFINE_int32(nnpack_num_threads,
|
||||
0,
|
||||
"The number of nnpack threads"
|
||||
"default: 0; 0 to disable threadpool.");
|
||||
|
||||
namespace paddle {
|
||||
|
||||
nnp_convolution_algorithm get_nnp_convolution_algorithm(
|
||||
const std::string& algorithm) {
|
||||
if (algorithm == "auto") {
|
||||
return nnp_convolution_algorithm_auto;
|
||||
} else if (algorithm == "ft8x8") {
|
||||
return nnp_convolution_algorithm_ft8x8;
|
||||
} else if (algorithm == "ft16x16") {
|
||||
return nnp_convolution_algorithm_ft16x16;
|
||||
} else if (algorithm == "wt8x8") {
|
||||
return nnp_convolution_algorithm_wt8x8;
|
||||
} else if (algorithm == "implicit-gemm") {
|
||||
return nnp_convolution_algorithm_implicit_gemm;
|
||||
} else if (algorithm == "direct") {
|
||||
return nnp_convolution_algorithm_direct;
|
||||
} else {
|
||||
return nnp_convolution_algorithm_auto;
|
||||
}
|
||||
}
|
||||
|
||||
template <DeviceType Device>
|
||||
class NNPACKConvFunction : public ConvFunctionBase {
|
||||
public:
|
||||
void init(const FuncConfig& config) override {
|
||||
ConvFunctionBase::init(config);
|
||||
CHECK_EQ(groups_, (size_t)1);
|
||||
algorithm_ = get_nnp_convolution_algorithm(config.get<std::string>("algo"));
|
||||
// algorithm_ = nnp_convolution_algorithm_auto;
|
||||
transform_strategy_ = nnp_convolution_transform_strategy_compute;
|
||||
nnp_status status = nnp_initialize();
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
workspaceBuffer_ = nullptr;
|
||||
workspaceSize_ = 0;
|
||||
|
||||
threadpool_ = nullptr;
|
||||
if (FLAGS_nnpack_num_threads) {
|
||||
threadpool_ = pthreadpool_create(FLAGS_nnpack_num_threads);
|
||||
VLOG(3) << "Number of threads "
|
||||
<< pthreadpool_get_threads_count(threadpool_);
|
||||
}
|
||||
}
|
||||
|
||||
~NNPACKConvFunction() {
|
||||
if (threadpool_) {
|
||||
pthreadpool_destroy(threadpool_);
|
||||
}
|
||||
if (workspaceBuffer_) {
|
||||
free(workspaceBuffer_);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void check(const BufferArgs& inputs,
|
||||
const BufferArgs& outputs) override {
|
||||
const TensorShape& input = inputs[0].shape();
|
||||
const TensorShape& filter = inputs[1].shape();
|
||||
const TensorShape& output = outputs[0].shape();
|
||||
checkShape(input, filter, output);
|
||||
}
|
||||
|
||||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||
CHECK_EQ(numInputs_, inputs.size());
|
||||
CHECK_EQ(numOutputs_, outputs.size());
|
||||
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||
check(inputs, outputs);
|
||||
const TensorShape& input = inputs[0].shape();
|
||||
const TensorShape& filter = inputs[1].shape();
|
||||
const TensorShape& output = outputs[0].shape();
|
||||
|
||||
size_t batchSize = input[0];
|
||||
size_t inputChannels = input[1];
|
||||
size_t inputHeight = input[2];
|
||||
size_t inputWidth = input[3];
|
||||
size_t filterHeight = getFilterHeight(filter);
|
||||
size_t filterWidth = getFilterWidth(filter);
|
||||
size_t outputChannels = output[1];
|
||||
// size_t outputHeight = output[2];
|
||||
// size_t outputWidth = output[3];
|
||||
|
||||
nnp_size inputSize = {.width = inputWidth, .height = inputHeight};
|
||||
nnp_padding padding = {.top = (size_t)paddingH(),
|
||||
.right = (size_t)paddingW(),
|
||||
.bottom = (size_t)paddingH(),
|
||||
.left = (size_t)paddingW()};
|
||||
nnp_size kernelSize = {.width = filterWidth, .height = filterHeight};
|
||||
nnp_size outputSubsampling = {.width = (size_t)strideW(),
|
||||
.height = (size_t)strideH()};
|
||||
|
||||
float* inputData = inputs[0].data<float>();
|
||||
float* filterData = inputs[1].data<float>();
|
||||
float* outputData = outputs[0].data<float>();
|
||||
|
||||
void* bufferPtr = nullptr;
|
||||
size_t* sizePtr = nullptr;
|
||||
size_t needSize;
|
||||
if (FLAGS_nnpack_allocate_outside) {
|
||||
if (batchSize == 1) {
|
||||
nnp_status status = nnp_convolution_inference(algorithm_,
|
||||
transform_strategy_,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
outputSubsampling,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
&needSize,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
} else {
|
||||
// only supports stride = 1
|
||||
CHECK_EQ(strideH(), 1);
|
||||
CHECK_EQ(strideW(), 1);
|
||||
nnp_status status = nnp_convolution_output(algorithm_,
|
||||
batchSize,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
&needSize,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
}
|
||||
|
||||
VLOG(3) << "workspace size is " << needSize;
|
||||
if (needSize > workspaceSize_) {
|
||||
workspaceSize_ = needSize;
|
||||
if (workspaceBuffer_) {
|
||||
free(workspaceBuffer_);
|
||||
} else {
|
||||
posix_memalign(&workspaceBuffer_, 64, needSize);
|
||||
}
|
||||
}
|
||||
|
||||
if (needSize) {
|
||||
bufferPtr = workspaceBuffer_;
|
||||
sizePtr = &needSize;
|
||||
}
|
||||
}
|
||||
|
||||
if (batchSize == 1) {
|
||||
nnp_status status =
|
||||
nnp_convolution_inference(algorithm_,
|
||||
transform_strategy_,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
outputSubsampling,
|
||||
inputData,
|
||||
filterData,
|
||||
nullptr, /* bias */
|
||||
outputData,
|
||||
bufferPtr,
|
||||
sizePtr,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
threadpool_, /* threadpool */
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
} else {
|
||||
// only supports stride = 1
|
||||
CHECK_EQ(strideH(), 1);
|
||||
CHECK_EQ(strideW(), 1);
|
||||
nnp_status status = nnp_convolution_output(algorithm_,
|
||||
batchSize,
|
||||
inputChannels,
|
||||
outputChannels,
|
||||
inputSize,
|
||||
padding,
|
||||
kernelSize,
|
||||
inputData,
|
||||
filterData,
|
||||
nullptr, /* bias */
|
||||
outputData,
|
||||
bufferPtr,
|
||||
sizePtr,
|
||||
nnp_activation_identity,
|
||||
nullptr,
|
||||
threadpool_, /* threadpool */
|
||||
nullptr);
|
||||
CHECK_EQ(status, nnp_status_success);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
nnp_convolution_algorithm algorithm_;
|
||||
nnp_convolution_transform_strategy transform_strategy_;
|
||||
void* workspaceBuffer_;
|
||||
size_t workspaceSize_;
|
||||
pthreadpool_t threadpool_;
|
||||
};
|
||||
|
||||
REGISTER_TYPED_FUNC(NNPACKConv, CPU, NNPACKConvFunction);
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,99 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "paddle/function/Function.h"
|
||||
#include "paddle/function/FunctionTest.h"
|
||||
|
||||
DEFINE_string(algo,
|
||||
"auto",
|
||||
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
|
||||
"implicit-gemm, or direct) for computing convolution of NNPACK.");
|
||||
|
||||
namespace paddle {
|
||||
|
||||
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \
|
||||
if (algo == "direct" && filterSize != 1) continue; \
|
||||
if (algo == "direct" && batchSize != 1) continue; \
|
||||
if (algo == "wt8x8" && filterSize != 3) continue; \
|
||||
if (algo == "implicit-gemm" && batchSize != 1) continue; \
|
||||
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
|
||||
|
||||
class ConvolutionTest {
|
||||
public:
|
||||
ConvolutionTest(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
std::string algo = "auto") {
|
||||
for (size_t batchSize : {1, 32}) {
|
||||
for (size_t inputSize : {7, 14, 54}) {
|
||||
for (size_t filterSize : {1, 3, 5}) {
|
||||
for (size_t inputChannels : {3, 64}) {
|
||||
for (size_t outputChannels : {3, 64, 128}) {
|
||||
if (inputChannels < outputChannels) break;
|
||||
for (size_t stride : {1, 2}) {
|
||||
// if batchSize > 1 NNPACKConv only supports stride = 1
|
||||
if (batchSize > 1 && stride > 1) break;
|
||||
for (size_t padding : {0, 1}) {
|
||||
if (padding >= filterSize) break;
|
||||
size_t outputSize =
|
||||
(inputSize - filterSize + 2 * padding + stride) / stride;
|
||||
IS_NNPACK_SUPPORT(algo, filterSize, stride);
|
||||
LOG(INFO) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputSize
|
||||
<< " inputWidth=" << inputSize
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterSize
|
||||
<< " filterWidth=" << filterSize
|
||||
<< " outputHeight=" << outputSize
|
||||
<< " outputWidth=" << outputSize
|
||||
<< " stride=" << stride << " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", (size_t)1)
|
||||
.set("algo", algo));
|
||||
|
||||
TensorShape shape0{
|
||||
batchSize, inputChannels, inputSize, inputSize};
|
||||
TensorShape shape1{
|
||||
outputChannels, inputChannels, filterSize, filterSize};
|
||||
TensorShape shape2{
|
||||
batchSize, outputChannels, outputSize, outputSize};
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
|
||||
test.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Convolution, NNPACK) {
|
||||
// NNPACK only supports stride = 1
|
||||
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo);
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,16 @@
|
||||
# Find the NNPACK library
|
||||
# NNPACK_ROOT - where to find NNPACK include and library.
|
||||
#
|
||||
|
||||
set(NNPACK_FOUND OFF)
|
||||
set(NNPACK_ROOT $ENV{NNPACK_ROOT} CACHE PATH "Folder contains NNPACK")
|
||||
find_path(NNPACK_INC_DIR nnpack.h PATHS ${NNPACK_ROOT}/include)
|
||||
find_library(NNPACK_LIB NAMES nnpack PATHS ${NNPACK_ROOT}/lib)
|
||||
find_library(PTHREADPOOL_LIB NAMES pthreadpool PATHS ${NNPACK_ROOT}/lib)
|
||||
|
||||
if(NNPACK_INC_DIR AND NNPACK_LIB AND PTHREADPOOL_LIB)
|
||||
set(NNPACK_FOUND ON)
|
||||
INCLUDE_DIRECTORIES(${NNPACK_INC_DIR})
|
||||
else()
|
||||
message(FATAL_ERROR "Cannot find NNPACK in (${NNPACK_ROOT})")
|
||||
endif()
|
Loading…
Reference in new issue