|
|
@ -37,12 +37,38 @@ class UnsqueezeOp : public framework::OperatorWithKernel {
|
|
|
|
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
|
|
|
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
|
|
|
"Invalid dimensions, the rank of Input(X) "
|
|
|
|
"Invalid dimensions, the rank of Input(X) "
|
|
|
|
"should be in the range of [1, 6] (Eigen limit)");
|
|
|
|
"should be in the range of [1, 6] (Eigen limit)");
|
|
|
|
auto out_dims = GetOutputShape(axes, x_dims);
|
|
|
|
if (!axes.empty()) {
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
auto out_dims = GetOutputShape(axes, x_dims);
|
|
|
|
if (x_dims[0] == out_dims[0]) {
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
|
|
if (x_dims[0] == out_dims[0]) {
|
|
|
|
// are the same.
|
|
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
|
|
ctx->ShareLoD("X", "Out");
|
|
|
|
// are the same.
|
|
|
|
|
|
|
|
ctx->ShareLoD("X", "Out");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (ctx->HasInputs("AxesTensorList")) {
|
|
|
|
|
|
|
|
auto AxesTensorList = ctx->Inputs("AxesTensorList");
|
|
|
|
|
|
|
|
int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_LE(output_size, 6,
|
|
|
|
|
|
|
|
"The output tensor's rank should be less than 6.");
|
|
|
|
|
|
|
|
std::vector<int> vec_out_dims(output_size, -1);
|
|
|
|
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
|
|
|
|
|
|
|
|
} else if (ctx->HasInput("AxesTensor")) {
|
|
|
|
|
|
|
|
auto axes_dims = ctx->GetInputDim("AxesTensor");
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
|
|
|
axes_dims.size(), 1,
|
|
|
|
|
|
|
|
"Input(AxesTensor)'s dimension of Op(unsqueeze) must be 1. "
|
|
|
|
|
|
|
|
"But received AxesTensor's shape = [%s], "
|
|
|
|
|
|
|
|
"AxesTensor's dimension = %d.",
|
|
|
|
|
|
|
|
axes_dims, axes_dims.size());
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_GE(axes_dims[0], 0,
|
|
|
|
|
|
|
|
"Input(AxesTensor)'s shape must be known. But received "
|
|
|
|
|
|
|
|
"AxesTensor's shape = [%s]",
|
|
|
|
|
|
|
|
axes_dims);
|
|
|
|
|
|
|
|
int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_LE(output_size, 6,
|
|
|
|
|
|
|
|
"The output tensor's rank should be less than 6.");
|
|
|
|
|
|
|
|
std::vector<int> vec_out_dims(output_size, -1);
|
|
|
|
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -83,19 +109,46 @@ class UnsqueezeOp : public framework::OperatorWithKernel {
|
|
|
|
|
|
|
|
|
|
|
|
return framework::make_ddim(output_shape);
|
|
|
|
return framework::make_ddim(output_shape);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
|
|
|
|
|
|
const framework::ExecutionContext &ctx) const override {
|
|
|
|
|
|
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
|
|
|
|
|
|
ctx.device_context());
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
|
|
|
|
|
|
const std::string &var_name, const framework::Tensor &tensor,
|
|
|
|
|
|
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
|
|
|
|
|
|
if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
|
|
|
|
|
|
|
|
return expected_kernel_type;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
|
|
|
|
|
|
tensor.place(), tensor.layout());
|
|
|
|
|
|
|
|
}
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
public:
|
|
|
|
public:
|
|
|
|
void Make() override {
|
|
|
|
void Make() override {
|
|
|
|
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
|
|
|
|
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
|
|
|
|
|
|
|
|
AddInput("AxesTensor",
|
|
|
|
|
|
|
|
"(Tensor<int32>, optional). The dimensions to be inserted. "
|
|
|
|
|
|
|
|
"If it exists, it will replace Attr(axes).")
|
|
|
|
|
|
|
|
.AsDispensable();
|
|
|
|
|
|
|
|
AddInput(
|
|
|
|
|
|
|
|
"AxesTensorList",
|
|
|
|
|
|
|
|
"(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
|
|
|
|
|
|
|
|
"If it exists, it will replace Attr(axes)."
|
|
|
|
|
|
|
|
"The shape of the element in vector must be [1].")
|
|
|
|
|
|
|
|
.AsDuplicable()
|
|
|
|
|
|
|
|
.AsDispensable();
|
|
|
|
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
|
|
|
|
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
|
|
|
|
AddAttr<std::vector<int>>("axes",
|
|
|
|
AddAttr<std::vector<int>>("axes",
|
|
|
|
"(std::vector<int>). List of integers,"
|
|
|
|
"(std::vector<int>). List of integers,"
|
|
|
|
" indicating the dimensions to be inserted")
|
|
|
|
" indicating the dimensions to be inserted")
|
|
|
|
|
|
|
|
.SetDefault({})
|
|
|
|
.AddCustomChecker([](const std::vector<int> &axes) {
|
|
|
|
.AddCustomChecker([](const std::vector<int> &axes) {
|
|
|
|
PADDLE_ENFORCE_EQ(!axes.empty(), true,
|
|
|
|
|
|
|
|
"Invalid axes, The unsqueeze axes is empty.");
|
|
|
|
|
|
|
|
// Validity Check: axes dims (<6).
|
|
|
|
// Validity Check: axes dims (<6).
|
|
|
|
PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
|
|
|
|
PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
|
|
|
|
"Invalid dimensions, dynamic dimensions should be "
|
|
|
|
"Invalid dimensions, dynamic dimensions should be "
|
|
|
@ -136,28 +189,12 @@ class UnsqueezeGradOp : public framework::OperatorWithKernel {
|
|
|
|
// will be used in unsqueeze_grad, in this way, the framework can reuse
|
|
|
|
// will be used in unsqueeze_grad, in this way, the framework can reuse
|
|
|
|
// the memory of X immediately the unsqueeze2_op is finished.
|
|
|
|
// the memory of X immediately the unsqueeze2_op is finished.
|
|
|
|
// Considering compatibility issues, we could not fix unsqueeze2_op
|
|
|
|
// Considering compatibility issues, we could not fix unsqueeze2_op
|
|
|
|
class Unsqueeze2Op : public framework::OperatorWithKernel {
|
|
|
|
class Unsqueeze2Op : public UnsqueezeOp {
|
|
|
|
public:
|
|
|
|
public:
|
|
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
using UnsqueezeOp::UnsqueezeOp;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
|
|
UnsqueezeOp::InferShape(ctx);
|
|
|
|
"Input(X) of Unsqueeze operator should not be null.");
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
|
|
|
|
|
|
"Output(Out) of Unsqueeze operator should not be null.");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
|
|
|
|
|
|
|
const auto &x_dims = ctx->GetInputDim("X");
|
|
|
|
const auto &x_dims = ctx->GetInputDim("X");
|
|
|
|
// Validity Check: input tensor dims (<6).
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
|
|
|
|
|
|
|
"Invalid dimensions, the rank of Input(X) "
|
|
|
|
|
|
|
|
"should be in the range of [1, 6] (Eigen limit)");
|
|
|
|
|
|
|
|
auto out_dims = UnsqueezeOp::GetOutputShape(axes, x_dims);
|
|
|
|
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
|
|
|
|
if (x_dims[0] == out_dims[0]) {
|
|
|
|
|
|
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
|
|
|
|
|
|
// are the same.
|
|
|
|
|
|
|
|
ctx->ShareLoD("X", "Out");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
ctx->HasOutput("XShape"), true,
|
|
|
|
ctx->HasOutput("XShape"), true,
|
|
|
@ -252,12 +289,11 @@ REGISTER_OP_CPU_KERNEL(
|
|
|
|
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
|
|
|
|
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
|
|
|
|
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
|
|
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
unsqueeze2,
|
|
|
|
unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
|
|
|
|
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, double>,
|
|
|
|
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
|
|
|
|
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int>,
|
|
|
|
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
|
|
|
|
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
|
|
|
|
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
|
|
ops::Unsqueeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
|
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
unsqueeze2_grad,
|
|
|
|
unsqueeze2_grad,
|
|
|
|
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
|