|
|
|
@ -18,12 +18,9 @@ namespace paddle {
|
|
|
|
|
namespace inference {
|
|
|
|
|
|
|
|
|
|
struct DataRecord {
|
|
|
|
|
std::vector<std::vector<int64_t>> title1_all, title2_all, title3_all, l1_all;
|
|
|
|
|
std::vector<std::vector<int64_t>> title1, title2, title3, l1;
|
|
|
|
|
std::vector<size_t> title1_lod, title2_lod, title3_lod, l1_lod;
|
|
|
|
|
size_t batch_iter{0};
|
|
|
|
|
size_t batch_size{1};
|
|
|
|
|
size_t num_samples; // total number of samples
|
|
|
|
|
std::vector<size_t> lod1, lod2, lod3, l1_lod;
|
|
|
|
|
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
|
|
|
|
|
DataRecord() = default;
|
|
|
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
|
|
|
: batch_size(batch_size) {
|
|
|
|
@ -33,41 +30,11 @@ struct DataRecord {
|
|
|
|
|
DataRecord data;
|
|
|
|
|
size_t batch_end = batch_iter + batch_size;
|
|
|
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
|
|
|
if (batch_end <= title1_all.size()) {
|
|
|
|
|
data.title1_all.assign(title1_all.begin() + batch_iter,
|
|
|
|
|
title1_all.begin() + batch_end);
|
|
|
|
|
data.title2_all.assign(title2_all.begin() + batch_iter,
|
|
|
|
|
title2_all.begin() + batch_end);
|
|
|
|
|
data.title3_all.assign(title3_all.begin() + batch_iter,
|
|
|
|
|
title3_all.begin() + batch_end);
|
|
|
|
|
data.l1_all.assign(l1_all.begin() + batch_iter,
|
|
|
|
|
l1_all.begin() + batch_end);
|
|
|
|
|
// Prepare LoDs
|
|
|
|
|
data.title1_lod.push_back(0);
|
|
|
|
|
data.title2_lod.push_back(0);
|
|
|
|
|
data.title3_lod.push_back(0);
|
|
|
|
|
data.l1_lod.push_back(0);
|
|
|
|
|
CHECK(!data.title1_all.empty());
|
|
|
|
|
CHECK(!data.title2_all.empty());
|
|
|
|
|
CHECK(!data.title3_all.empty());
|
|
|
|
|
CHECK(!data.l1_all.empty());
|
|
|
|
|
CHECK_EQ(data.title1_all.size(), data.title2_all.size());
|
|
|
|
|
CHECK_EQ(data.title1_all.size(), data.title3_all.size());
|
|
|
|
|
CHECK_EQ(data.title1_all.size(), data.l1_all.size());
|
|
|
|
|
for (size_t j = 0; j < data.title1_all.size(); j++) {
|
|
|
|
|
data.title1.push_back(data.title1_all[j]);
|
|
|
|
|
data.title2.push_back(data.title2_all[j]);
|
|
|
|
|
data.title3.push_back(data.title3_all[j]);
|
|
|
|
|
data.l1.push_back(data.l1_all[j]);
|
|
|
|
|
// calculate lod
|
|
|
|
|
data.title1_lod.push_back(data.title1_lod.back() +
|
|
|
|
|
data.title1_all[j].size());
|
|
|
|
|
data.title2_lod.push_back(data.title2_lod.back() +
|
|
|
|
|
data.title2_all[j].size());
|
|
|
|
|
data.title3_lod.push_back(data.title3_lod.back() +
|
|
|
|
|
data.title3_all[j].size());
|
|
|
|
|
data.l1_lod.push_back(data.l1_lod.back() + data.l1_all[j].size());
|
|
|
|
|
}
|
|
|
|
|
if (batch_end <= title1.size()) {
|
|
|
|
|
GetInputPerBatch(title1, &data.title1, &data.lod1, batch_iter, batch_end);
|
|
|
|
|
GetInputPerBatch(title2, &data.title2, &data.lod2, batch_iter, batch_end);
|
|
|
|
|
GetInputPerBatch(title3, &data.title3, &data.lod3, batch_iter, batch_end);
|
|
|
|
|
GetInputPerBatch(l1, &data.l1, &data.l1_lod, batch_iter, batch_end);
|
|
|
|
|
}
|
|
|
|
|
batch_iter += batch_size;
|
|
|
|
|
return data;
|
|
|
|
@ -92,10 +59,10 @@ struct DataRecord {
|
|
|
|
|
// load l1 data
|
|
|
|
|
std::vector<int64_t> l1_data;
|
|
|
|
|
split_to_int64(data[3], ' ', &l1_data);
|
|
|
|
|
title1_all.push_back(std::move(title1_data));
|
|
|
|
|
title2_all.push_back(std::move(title2_data));
|
|
|
|
|
title3_all.push_back(std::move(title3_data));
|
|
|
|
|
l1_all.push_back(std::move(l1_data));
|
|
|
|
|
title1.push_back(std::move(title1_data));
|
|
|
|
|
title2.push_back(std::move(title2_data));
|
|
|
|
|
title3.push_back(std::move(title3_data));
|
|
|
|
|
l1.push_back(std::move(l1_data));
|
|
|
|
|
}
|
|
|
|
|
num_samples = num_lines;
|
|
|
|
|
}
|
|
|
|
@ -109,24 +76,11 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
|
|
|
title3_tensor.name = "title3";
|
|
|
|
|
l1_tensor.name = "l1";
|
|
|
|
|
auto one_batch = data->NextBatch();
|
|
|
|
|
int title1_size = one_batch.title1_lod[one_batch.title1_lod.size() - 1];
|
|
|
|
|
title1_tensor.shape.assign({title1_size, 1});
|
|
|
|
|
title1_tensor.lod.assign({one_batch.title1_lod});
|
|
|
|
|
int title2_size = one_batch.title2_lod[one_batch.title2_lod.size() - 1];
|
|
|
|
|
title2_tensor.shape.assign({title2_size, 1});
|
|
|
|
|
title2_tensor.lod.assign({one_batch.title2_lod});
|
|
|
|
|
int title3_size = one_batch.title3_lod[one_batch.title3_lod.size() - 1];
|
|
|
|
|
title3_tensor.shape.assign({title3_size, 1});
|
|
|
|
|
title3_tensor.lod.assign({one_batch.title3_lod});
|
|
|
|
|
int l1_size = one_batch.l1_lod[one_batch.l1_lod.size() - 1];
|
|
|
|
|
l1_tensor.shape.assign({l1_size, 1});
|
|
|
|
|
l1_tensor.lod.assign({one_batch.l1_lod});
|
|
|
|
|
|
|
|
|
|
// assign data
|
|
|
|
|
TensorAssignData<int64_t>(&title1_tensor, one_batch.title1);
|
|
|
|
|
TensorAssignData<int64_t>(&title2_tensor, one_batch.title2);
|
|
|
|
|
TensorAssignData<int64_t>(&title3_tensor, one_batch.title3);
|
|
|
|
|
TensorAssignData<int64_t>(&l1_tensor, one_batch.l1);
|
|
|
|
|
TensorAssignData<int64_t>(&title1_tensor, one_batch.title1, one_batch.lod1);
|
|
|
|
|
TensorAssignData<int64_t>(&title2_tensor, one_batch.title2, one_batch.lod2);
|
|
|
|
|
TensorAssignData<int64_t>(&title3_tensor, one_batch.title3, one_batch.lod3);
|
|
|
|
|
TensorAssignData<int64_t>(&l1_tensor, one_batch.l1, one_batch.l1_lod);
|
|
|
|
|
// Set inputs.
|
|
|
|
|
input_slots->assign({title1_tensor, title2_tensor, title3_tensor, l1_tensor});
|
|
|
|
|
for (auto &tensor : *input_slots) {
|
|
|
|
|