|
|
|
@ -74,7 +74,7 @@ void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Paddle Function for Context Projection Forward.
|
|
|
|
|
* Calculate the value for the output layer with context projection.
|
|
|
|
|
* Calculate the output sequence after context projection.
|
|
|
|
|
*
|
|
|
|
|
* What is Context Projection?
|
|
|
|
|
* For example, assumed input (x) has 4 words and the dimension of each word
|
|
|
|
@ -92,10 +92,12 @@ void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
|
|
|
|
|
* c1, c2, d1, d2, 0, 0]
|
|
|
|
|
* @endcode
|
|
|
|
|
*
|
|
|
|
|
* \param outputs[0] output value.
|
|
|
|
|
* \param inputs[0] input value.
|
|
|
|
|
* \param inputs[1] input weight.
|
|
|
|
|
* \param inputs[2] input sequence.
|
|
|
|
|
* \param outputs[0].matrix output value, n * (d * l)
|
|
|
|
|
* \param outputs[0].vector input sequence, n * 1
|
|
|
|
|
* \param inputs[0].matrix input value, n * d
|
|
|
|
|
* \param inputs[0].vector input sequence, n * 1
|
|
|
|
|
* \param inputs[1].matrix input weight, pad * d
|
|
|
|
|
* \param inputs[1].vector input sequence, n * 1
|
|
|
|
|
*/
|
|
|
|
|
template <DeviceType Device>
|
|
|
|
|
class ContextProjectionForwardFunc : public FunctionBase {
|
|
|
|
@ -107,28 +109,40 @@ public:
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
|
CHECK_EQ((size_t)3, inputs.size());
|
|
|
|
|
CHECK(1 == inputs.size() || 2 == inputs.size());
|
|
|
|
|
CHECK_EQ((size_t)1, outputs.size());
|
|
|
|
|
|
|
|
|
|
CHECK(outputs[0].data() && inputs[0].data() && inputs[2].data());
|
|
|
|
|
CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
|
|
|
|
|
const auto val_seqs = dynamic_cast<const SequenceArg&>(inputs[0]);
|
|
|
|
|
const auto w_seqs = inputs.size() <= 1
|
|
|
|
|
? nullptr
|
|
|
|
|
: dynamic_cast<const SequenceArg*>(&inputs[1]);
|
|
|
|
|
auto out_seqs = dynamic_cast<const SequenceArg&>(outputs[0]);
|
|
|
|
|
|
|
|
|
|
CHECK(out_seqs.data() && val_seqs.data() &&
|
|
|
|
|
val_seqs.getSequenceIds().data());
|
|
|
|
|
CHECK_EQ(out_seqs.shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(val_seqs.shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(val_seqs.getSequenceIds().shape().ndims(), (size_t)1);
|
|
|
|
|
if (w_seqs) {
|
|
|
|
|
CHECK_EQ(w_seqs->shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(w_seqs->getSequenceIds().shape().ndims(), (size_t)1);
|
|
|
|
|
}
|
|
|
|
|
/// dim of output = dim of input * context_length
|
|
|
|
|
CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
|
|
|
|
|
/// dim of input == dim of weight
|
|
|
|
|
CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
|
|
|
|
|
CHECK_EQ(out_seqs.shape()[1], val_seqs.shape()[1] * context_length_);
|
|
|
|
|
/// input and output has the same batch_size
|
|
|
|
|
CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
|
|
|
|
|
CHECK_EQ(val_seqs.shape()[0], out_seqs.shape()[0]);
|
|
|
|
|
/// dim of input == dim of weight
|
|
|
|
|
if (w_seqs) {
|
|
|
|
|
CHECK_EQ(val_seqs.shape()[1], w_seqs->shape()[1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
|
|
|
auto out_mat = outputs[0].matrix<Device>();
|
|
|
|
|
const auto in_mat = inputs[0].matrix<Device>();
|
|
|
|
|
CHECK_EQ(out_seqs.getArgType(), ADD_TO);
|
|
|
|
|
auto out_mat = out_seqs.matrix<Device>();
|
|
|
|
|
const auto in_mat = val_seqs.matrix<Device>();
|
|
|
|
|
const auto w_mat =
|
|
|
|
|
!inputs[1].data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
|
|
|
|
|
: inputs[1].matrix<Device>();
|
|
|
|
|
const auto seq_vec = inputs[2].vector<int, Device>();
|
|
|
|
|
w_seqs ? w_seqs->matrix<Device>()
|
|
|
|
|
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0);
|
|
|
|
|
const auto seq_vec = val_seqs.getSequenceIds().vector<int, Device>();
|
|
|
|
|
ContextProjectionForward<Device>(out_mat,
|
|
|
|
|
in_mat,
|
|
|
|
|
w_mat,
|
|
|
|
@ -227,25 +241,25 @@ public:
|
|
|
|
|
CHECK_EQ((size_t)1, inputs.size());
|
|
|
|
|
CHECK_EQ((size_t)2, outputs.size());
|
|
|
|
|
|
|
|
|
|
const auto seqArg = dynamic_cast<const SequenceArg&>(inputs[0]);
|
|
|
|
|
CHECK(seqArg.data() && inputs[0].data());
|
|
|
|
|
CHECK_EQ(seqArg.shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(seqArg.getSequenceIds().shape().ndims(), (size_t)1);
|
|
|
|
|
const auto seq_arg = dynamic_cast<const SequenceArg&>(inputs[0]);
|
|
|
|
|
CHECK(seq_arg.data() && inputs[0].data());
|
|
|
|
|
CHECK_EQ(seq_arg.shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(seq_arg.getSequenceIds().shape().ndims(), (size_t)1);
|
|
|
|
|
CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
|
|
|
|
|
CHECK_EQ(outputs[1].shape().ndims(), (size_t)2);
|
|
|
|
|
|
|
|
|
|
/// dim of input grad == dim of weight
|
|
|
|
|
CHECK_EQ(outputs[0].shape()[1], outputs[1].shape()[1]);
|
|
|
|
|
/// input and output grad has the same batch_size
|
|
|
|
|
CHECK_EQ(outputs[0].shape()[0], seqArg.shape()[0]);
|
|
|
|
|
CHECK_EQ(outputs[0].shape()[0], seq_arg.shape()[0]);
|
|
|
|
|
/// dim of output val = dim of input grad * context_length
|
|
|
|
|
CHECK_EQ(seqArg.shape()[1], outputs[0].shape()[1] * context_length_);
|
|
|
|
|
CHECK_EQ(seq_arg.shape()[1], outputs[0].shape()[1] * context_length_);
|
|
|
|
|
|
|
|
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
|
|
|
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
|
|
|
|
|
|
|
|
|
|
const auto seq_vec = seqArg.getSequenceIds().vector<int, Device>();
|
|
|
|
|
const auto out_grad_mat = seqArg.matrix<Device>();
|
|
|
|
|
const auto seq_vec = seq_arg.getSequenceIds().vector<int, Device>();
|
|
|
|
|
const auto out_grad_mat = seq_arg.matrix<Device>();
|
|
|
|
|
auto in_grad_mat =
|
|
|
|
|
!outputs[0].data()
|
|
|
|
|
? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
|
|
|
|
@ -272,6 +286,91 @@ private:
|
|
|
|
|
size_t total_pad_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* \param inputs[0].matrix input grad, n*d
|
|
|
|
|
* \param inputs[0].vector input sequence, n*1
|
|
|
|
|
* \param outputs[0] output grad, n*(d*l)
|
|
|
|
|
*/
|
|
|
|
|
template <DeviceType Device>
|
|
|
|
|
class ContextProjectionBackwardDataFunc : public FunctionBase {
|
|
|
|
|
public:
|
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
|
context_length_ = config.get<size_t>("context_length");
|
|
|
|
|
context_start_ = config.get<int>("context_start");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
|
CHECK_EQ(1, static_cast<int>(inputs.size()));
|
|
|
|
|
CHECK_EQ(1, static_cast<int>(outputs.size()));
|
|
|
|
|
const auto in_seqs = dynamic_cast<const SequenceArg&>(inputs[0]);
|
|
|
|
|
CHECK(in_seqs.data() && outputs[0].data() &&
|
|
|
|
|
in_seqs.getSequenceIds().data());
|
|
|
|
|
CHECK_EQ(static_cast<int>(outputs[0].shape().ndims()), 2);
|
|
|
|
|
CHECK_EQ(static_cast<int>(in_seqs.shape().ndims()), 2);
|
|
|
|
|
CHECK_EQ(static_cast<int>(in_seqs.getSequenceIds().shape().ndims()), 1);
|
|
|
|
|
CHECK_EQ(outputs[0].shape().ndims(),
|
|
|
|
|
in_seqs.shape().ndims() * context_length_);
|
|
|
|
|
/// input and output has the same batch_size
|
|
|
|
|
CHECK_EQ(in_seqs.shape()[0], outputs[0].shape()[0]);
|
|
|
|
|
const auto out_grad_mat = outputs[0].matrix<Device>();
|
|
|
|
|
auto in_grad_mat = in_seqs.matrix<Device>();
|
|
|
|
|
const auto seq_vec = in_seqs.getSequenceIds().vector<int, Device>();
|
|
|
|
|
|
|
|
|
|
ContextProjectionBackwardData<Device>(
|
|
|
|
|
out_grad_mat, in_grad_mat, seq_vec, context_length_, context_start_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
size_t context_length_;
|
|
|
|
|
int context_start_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* \param inputs[0].matrix weight grad, pad * d
|
|
|
|
|
* \param inputs[0].vecotr input sequence, n * 1
|
|
|
|
|
* \param outputs[0] output grad, n * (d * l)
|
|
|
|
|
*/
|
|
|
|
|
template <DeviceType Device>
|
|
|
|
|
class ContextProjectionBackwardWeightFunc : public FunctionBase {
|
|
|
|
|
public:
|
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
|
context_length_ = config.get<size_t>("context_length");
|
|
|
|
|
context_start_ = config.get<int>("context_start");
|
|
|
|
|
begin_pad_ = config.get<size_t>("begin_pad");
|
|
|
|
|
total_pad_ = config.get<size_t>("total_pad");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
|
CHECK_EQ(1, static_cast<int>(inputs.size()));
|
|
|
|
|
CHECK_EQ(1, static_cast<int>(outputs.size()));
|
|
|
|
|
|
|
|
|
|
const auto in_seqs = dynamic_cast<const SequenceArg&>(inputs[0]);
|
|
|
|
|
CHECK(in_seqs.data() && in_seqs.getSequenceIds().data() &&
|
|
|
|
|
outputs[0].data());
|
|
|
|
|
CHECK_EQ(static_cast<int>(outputs[0].shape().ndims()), 2);
|
|
|
|
|
CHECK_EQ(static_cast<int>(in_seqs.shape().ndims()), 2);
|
|
|
|
|
CHECK_EQ(static_cast<int>(in_seqs.getSequenceIds().shape().ndims()), 1);
|
|
|
|
|
CHECK_EQ(in_seqs.shape()[0], outputs[0].shape()[0]);
|
|
|
|
|
CHECK_EQ(outputs[0].shape()[1], in_seqs.shape()[1] * context_length_);
|
|
|
|
|
const auto out_grad_mat = outputs[0].matrix<Device>();
|
|
|
|
|
auto w_grad_mat = inputs[0].matrix<Device>();
|
|
|
|
|
const auto seq_vec = in_seqs.getSequenceIds().vector<int, Device>();
|
|
|
|
|
ContextProjectionBackwardWeight<Device>(out_grad_mat,
|
|
|
|
|
w_grad_mat,
|
|
|
|
|
seq_vec,
|
|
|
|
|
context_length_,
|
|
|
|
|
context_start_,
|
|
|
|
|
total_pad_,
|
|
|
|
|
begin_pad_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
size_t context_length_;
|
|
|
|
|
int context_start_;
|
|
|
|
|
size_t begin_pad_;
|
|
|
|
|
size_t total_pad_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionForward,
|
|
|
|
|
CPU,
|
|
|
|
|
ContextProjectionForwardFunc);
|
|
|
|
@ -285,5 +384,11 @@ REGISTER_TYPED_FUNC(ContextProjectionForward,
|
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackward,
|
|
|
|
|
GPU,
|
|
|
|
|
ContextProjectionBackwardFunc);
|
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
|
|
|
|
|
GPU,
|
|
|
|
|
ContextProjectionBackwardDataFunc);
|
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
|
|
|
|
|
GPU,
|
|
|
|
|
ContextProjectionBackwardWeightFunc);
|
|
|
|
|
#endif
|
|
|
|
|
} // namespace paddle
|
|
|
|
|