|
|
|
@ -10,78 +10,60 @@
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace optimizer {
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
ParameterOptimizer<T> *ParameterOptimizer<T>::create(
|
|
|
|
|
ParameterOptimizer *ParameterOptimizer::create(
|
|
|
|
|
const ::std::string &config_proto) {
|
|
|
|
|
paddle::OptimizerConfig config;
|
|
|
|
|
CHECK(config.ParseFromString(config_proto) == 0)
|
|
|
|
|
<< "error : optimizer config";
|
|
|
|
|
CHECK(config_valid(config) == 0) << "error : invalid optimizer config ";
|
|
|
|
|
|
|
|
|
|
BaseLr *lr = nullptr;
|
|
|
|
|
switch (config.lr_policy()) {
|
|
|
|
|
case "ConstLr":
|
|
|
|
|
lr = new ConstLr(config.lr_config().learning_rate());
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
ParameterOptimizer<T> *opt = nullptr;
|
|
|
|
|
switch (config.optimizer_name()) {
|
|
|
|
|
case "SGD":
|
|
|
|
|
opt = new SGDOptimizer<T>(config.sgd().momentum(),
|
|
|
|
|
config.sgd().decay(),
|
|
|
|
|
config.sgd().nesterov(),
|
|
|
|
|
lr);
|
|
|
|
|
break;
|
|
|
|
|
case "Adagrad":
|
|
|
|
|
opt = new AdagradOptimizer<T>(
|
|
|
|
|
auto select_lr_policy = [=](const OptimizerConfig &config) -> BaseLr * {
|
|
|
|
|
std::string s(config.lr_policy());
|
|
|
|
|
if (s == "ConstLr") return new ConstLr(config.lr_config().learning_rate());
|
|
|
|
|
if (s == "LinearLr")
|
|
|
|
|
return new LinearLr(config.lr_config().learning_rate(),
|
|
|
|
|
config.lr_config().lr_decay_a(),
|
|
|
|
|
config.lr_config().lr_decay_b());
|
|
|
|
|
// default
|
|
|
|
|
return new ConstLr(config.lr_config().learning_rate());
|
|
|
|
|
};
|
|
|
|
|
BaseLr *lr = select_lr_policy(config);
|
|
|
|
|
auto select_optimizer =
|
|
|
|
|
[=](const OptimizerConfig &config) -> ParameterOptimizer * {
|
|
|
|
|
std::string s(config.optimizer_name());
|
|
|
|
|
if (s == "SGD") {
|
|
|
|
|
return new SGDOptimizer(config.sgd().momentum(),
|
|
|
|
|
config.sgd().decay(),
|
|
|
|
|
config.sgd().nesterov(),
|
|
|
|
|
lr);
|
|
|
|
|
}
|
|
|
|
|
if (s == "Adadelta") {
|
|
|
|
|
return new AdagradOptimizer(
|
|
|
|
|
config.adagrad().epsilon(), config.adagrad().decay(), lr);
|
|
|
|
|
break;
|
|
|
|
|
case "Adadelta":
|
|
|
|
|
opt = new AdadeltaOptimizer<T>(config.adadelta().rho(),
|
|
|
|
|
config.adadelta().epsilon(),
|
|
|
|
|
config.adadelta().decay(),
|
|
|
|
|
lr);
|
|
|
|
|
break;
|
|
|
|
|
case "Adam":
|
|
|
|
|
opt = new AdamOptimizer<T>(config.adam().beta_1(),
|
|
|
|
|
config.adam().beta_2(),
|
|
|
|
|
config.adam().epsilon(),
|
|
|
|
|
config.adam().decay(),
|
|
|
|
|
lr);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return opt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
T *ParameterOptimizer<T>::get_weight() const {
|
|
|
|
|
return parameter.get().get_buffer();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
char *ParameterOptimizer<T>::get_config_proto() const {
|
|
|
|
|
// set config dynamic value for save checkpoint
|
|
|
|
|
config_.lr_policy().set_learning_rate(
|
|
|
|
|
lr_policy->get_learning_rate(num_sample_passed));
|
|
|
|
|
config_.set_num_sample_passed(num_sample_passed);
|
|
|
|
|
config_.set_iterations(iterations);
|
|
|
|
|
return config_.SerializeAsString().c_str();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
void ParameterOptimizer<T>::set_weight(const Tensor<T> *p) {
|
|
|
|
|
parameter_ = p;
|
|
|
|
|
}
|
|
|
|
|
if (s == "Adagrad") {
|
|
|
|
|
return new AdagradOptimizer(
|
|
|
|
|
config.adagrad().epsilon(), config.adagrad().decay(), lr);
|
|
|
|
|
}
|
|
|
|
|
if (s == "Adam") {
|
|
|
|
|
return new AdadeltaOptimizer(config.adadelta().rho(),
|
|
|
|
|
config.adadelta().epsilon(),
|
|
|
|
|
config.adadelta().decay(),
|
|
|
|
|
lr);
|
|
|
|
|
}
|
|
|
|
|
// default
|
|
|
|
|
return new SGDOptimizer(config.sgd().momentum(),
|
|
|
|
|
config.sgd().decay(),
|
|
|
|
|
config.sgd().nesterov(),
|
|
|
|
|
lr);
|
|
|
|
|
};
|
|
|
|
|
return select_optimizer(config);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
bool ParameterOptimizer<T>::config_valid(const ::std::string &config) const {
|
|
|
|
|
// TODO(zhihong) : add more value checker, failed ASAP
|
|
|
|
|
return true;
|
|
|
|
|
real *ParameterOptimizer::get_weight() const {
|
|
|
|
|
return parameter_->get_buffer();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template class ParameterOptimzier<float>;
|
|
|
|
|
template class ParameterOptimzier<double>;
|
|
|
|
|
void ParameterOptimizer::set_weight(Tensor *p) { parameter_ = p; }
|
|
|
|
|
|
|
|
|
|
} // namespace optimizer
|
|
|
|
|
} // namespace paddle
|
|
|
|
|