|
|
|
@ -94,7 +94,7 @@ class TestMNISTTest(unittest.TestCase):
|
|
|
|
|
mnist = MNIST(mode='test', transform=transform)
|
|
|
|
|
self.assertTrue(len(mnist) == 10000)
|
|
|
|
|
|
|
|
|
|
for i in range(len(mnist)):
|
|
|
|
|
i = np.random.randint(0, len(mnist) - 1)
|
|
|
|
|
image, label = mnist[i]
|
|
|
|
|
self.assertTrue(image.shape[0] == 1)
|
|
|
|
|
self.assertTrue(image.shape[1] == 28)
|
|
|
|
@ -109,7 +109,7 @@ class TestMNISTTrain(unittest.TestCase):
|
|
|
|
|
mnist = MNIST(mode='train', transform=transform)
|
|
|
|
|
self.assertTrue(len(mnist) == 60000)
|
|
|
|
|
|
|
|
|
|
for i in range(len(mnist)):
|
|
|
|
|
i = np.random.randint(0, len(mnist) - 1)
|
|
|
|
|
image, label = mnist[i]
|
|
|
|
|
self.assertTrue(image.shape[0] == 1)
|
|
|
|
|
self.assertTrue(image.shape[1] == 28)
|
|
|
|
@ -140,7 +140,7 @@ class TestFASHIONMNISTTest(unittest.TestCase):
|
|
|
|
|
mnist = FashionMNIST(mode='test', transform=transform)
|
|
|
|
|
self.assertTrue(len(mnist) == 10000)
|
|
|
|
|
|
|
|
|
|
for i in range(len(mnist)):
|
|
|
|
|
i = np.random.randint(0, len(mnist) - 1)
|
|
|
|
|
image, label = mnist[i]
|
|
|
|
|
self.assertTrue(image.shape[0] == 1)
|
|
|
|
|
self.assertTrue(image.shape[1] == 28)
|
|
|
|
@ -155,7 +155,7 @@ class TestFASHIONMNISTTrain(unittest.TestCase):
|
|
|
|
|
mnist = FashionMNIST(mode='train', transform=transform)
|
|
|
|
|
self.assertTrue(len(mnist) == 60000)
|
|
|
|
|
|
|
|
|
|
for i in range(len(mnist)):
|
|
|
|
|
i = np.random.randint(0, len(mnist) - 1)
|
|
|
|
|
image, label = mnist[i]
|
|
|
|
|
self.assertTrue(image.shape[0] == 1)
|
|
|
|
|
self.assertTrue(image.shape[1] == 28)
|
|
|
|
|