parent
8013328ed8
commit
873ee9ab7e
@ -0,0 +1,125 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "LayerGradUtil.h"
|
||||
#include "paddle/testing/TestUtil.h"
|
||||
|
||||
using namespace paddle; // NOLINT
|
||||
using namespace std; // NOLINT
|
||||
|
||||
// Do one forward pass of expand layer and check to see if its output
|
||||
// matches the given result.(Test onlyCPU currently.)
|
||||
void doOneExpandTest(string trans_type,
|
||||
bool hasSubseq,
|
||||
bool useGpu,
|
||||
Argument& input1,
|
||||
Argument& input2,
|
||||
Argument& result) {
|
||||
FLAGS_use_gpu = false;
|
||||
// Setting up the expand layer
|
||||
TestConfig config;
|
||||
config.layerConfig.set_type("expand");
|
||||
|
||||
auto inputType1 =
|
||||
trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA;
|
||||
config.inputDefs.push_back({inputType1, "layer0", 1, 0});
|
||||
auto inputType2 =
|
||||
hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA;
|
||||
|
||||
config.inputDefs.push_back({inputType2, "layer1", 1, 0});
|
||||
config.layerConfig.add_inputs();
|
||||
config.layerConfig.add_inputs();
|
||||
config.layerConfig.set_trans_type(trans_type);
|
||||
|
||||
// data layer initialize
|
||||
std::vector<DataLayerPtr> dataLayers;
|
||||
LayerMap layerMap;
|
||||
vector<Argument> datas;
|
||||
initDataLayer(
|
||||
config, &dataLayers, &datas, &layerMap, "expand", 1, false, useGpu);
|
||||
dataLayers[0]->getOutput() = input1;
|
||||
dataLayers[1]->getOutput() = input2;
|
||||
|
||||
// test layer initialize
|
||||
std::vector<ParameterPtr> parameters;
|
||||
LayerPtr expandLayer;
|
||||
initTestLayer(config, &layerMap, ¶meters, &expandLayer);
|
||||
expandLayer->forward(PASS_GC);
|
||||
checkMatrixEqual(expandLayer->getOutputValue(), result.value);
|
||||
}
|
||||
|
||||
TEST(Layer, ExpandLayerFwd) {
|
||||
bool useGpu = false;
|
||||
|
||||
// Assume batch_size =3 in all cases.
|
||||
|
||||
// CPU case 1. non-seq expand to seq
|
||||
// input1 = 1,2,3
|
||||
// input2 = [4,5],[6],[7,8,9]
|
||||
// result = [1,1],[2],[3,3,3]
|
||||
Argument input1, input2, result;
|
||||
input1.value = Matrix::create(3, 1, false, useGpu);
|
||||
real input1Data[] = {1, 2, 3};
|
||||
input1.value->setData(input1Data);
|
||||
|
||||
input2.value = Matrix::create(6, 1, false, useGpu);
|
||||
real input2Data[] = {4, 5, 6, 7, 8, 9};
|
||||
input2.value->setData(input2Data);
|
||||
input2.sequenceStartPositions = ICpuGpuVector::create(4, useGpu);
|
||||
int input2Seq[] = {0, 2, 3, 6};
|
||||
input2.sequenceStartPositions->copyFrom(input2Seq, 4, useGpu);
|
||||
|
||||
result.value = Matrix::create(6, 1, false, useGpu);
|
||||
real resultData[] = {1, 1, 2, 3, 3, 3};
|
||||
result.value->setData(resultData);
|
||||
|
||||
doOneExpandTest("non-seq", false, useGpu, input1, input2, result);
|
||||
|
||||
// CPU case 2. non-seq expand to sub-seq
|
||||
// input1 = 1,2,3
|
||||
// input2 = [[4,5]],[[6]],[[7],[8,9]]
|
||||
// result = [[1,1]],[[2]],[[3],[3,3]]
|
||||
input2.subSequenceStartPositions = ICpuGpuVector::create(5, useGpu);
|
||||
int input2SubSeq[] = {0, 2, 3, 4, 6};
|
||||
input2.subSequenceStartPositions->copyFrom(input2SubSeq, 5, useGpu);
|
||||
|
||||
doOneExpandTest("non-seq", true, useGpu, input1, input2, result);
|
||||
|
||||
// CPU case 3. seq expand to sub-seq
|
||||
// input1 = [1,2],[3],[4]
|
||||
// input2 = [[4,5]],[[6]],[[7],[8,9]]
|
||||
// result = [[1,1]],[[2]],[[3],[4,4]]
|
||||
Matrix::resizeOrCreate(input1.value, 4, 1, false, useGpu);
|
||||
real input1Data_case3[] = {1, 2, 3, 4};
|
||||
input1.value->setData(input1Data_case3);
|
||||
|
||||
input1.sequenceStartPositions = ICpuGpuVector::create(4, useGpu);
|
||||
int input1Seq[] = {0, 2, 3, 4};
|
||||
input1.sequenceStartPositions->copyFrom(input1Seq, 4, useGpu);
|
||||
|
||||
real resultData_case3[] = {1, 1, 2, 3, 4, 4};
|
||||
result.value->setData(resultData_case3);
|
||||
|
||||
doOneExpandTest("seq", true, useGpu, input1, input2, result);
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
testing::InitGoogleTest(&argc, argv);
|
||||
initMain(argc, argv);
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
Loading…
Reference in new issue