add test data for seqpool1

revert-15207-remove_op_handle_lock_and_fix_var
tensor-tang 6 years ago
parent ce70229ba6
commit 8e271896ae

@ -90,6 +90,11 @@ set(SEQ_CONV1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/seq_conv1")
download_model_and_data(${SEQ_CONV1_INSTALL_DIR} "seq_conv1_model.tar.gz" "seq_conv1_data.txt.tar.gz") download_model_and_data(${SEQ_CONV1_INSTALL_DIR} "seq_conv1_model.tar.gz" "seq_conv1_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_seq_conv1 ${SEQ_CONV1_INSTALL_DIR} analyzer_seq_conv1_tester.cc) inference_analysis_api_test(test_analyzer_seq_conv1 ${SEQ_CONV1_INSTALL_DIR} analyzer_seq_conv1_tester.cc)
# seq_pool1
set(SEQ_POOL1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/seq_pool1")
download_model_and_data(${SEQ_POOL1_INSTALL_DIR} "seq_pool1_model.tar.gz" "seq_pool1_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_seq_pool1 ${SEQ_POOL1_INSTALL_DIR} analyzer_seq_pool1_tester.cc)
# ocr # ocr
set(OCR_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/ocr") set(OCR_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/ocr")
if (NOT EXISTS ${OCR_INSTALL_DIR}) if (NOT EXISTS ${OCR_INSTALL_DIR})
@ -108,10 +113,6 @@ inference_analysis_api_test_with_refer_result(test_analyzer_mobilenet_transpose
inference_analysis_api_test_with_fake_data(test_analyzer_resnet50 inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
"${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz") "${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz")
# seq_pool1
inference_analysis_api_test_with_fake_data(test_analyzer_seq_pool1
"${INFERENCE_DEMO_INSTALL_DIR}/seq_pool1" analyzer_seq_pool1_tester.cc "seq_pool1.tar.gz")
# mobilenet with depthwise_conv op # mobilenet with depthwise_conv op
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz") "${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz")

@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h" #include "paddle/fluid/inference/tests/api/tester_helper.h"
@ -20,6 +21,106 @@ namespace paddle {
namespace inference { namespace inference {
namespace analysis { namespace analysis {
struct OneSlotInBatch {
std::string name;
std::vector<std::vector<float>> data;
std::vector<int> shape;
std::vector<size_t> lod;
};
struct DataRecord {
std::vector<std::vector<OneSlotInBatch>> batched_data;
std::map<std::string, std::vector<std::vector<float>>> datasets;
size_t batch_iter{0}, num_samples; // total number of samples
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1) {
Load(path);
Prepare(batch_size);
}
void Load(const std::string &path) {
std::ifstream file(path);
constexpr int num_slots = 154;
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
std::vector<float> slot_data;
split_to_float(data[1], ' ', &slot_data);
std::string name = data[0];
PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0,
"line %d, %s should be divisible", num_lines, name);
datasets[name].emplace_back(std::move(slot_data));
}
num_samples = num_lines / num_slots;
PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
"num samples should be divisible");
PADDLE_ENFORCE_GT(num_samples, 0);
}
void Prepare(int bs) {
for (auto it = datasets.begin(); it != datasets.end(); ++it) {
PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
"size of each slot should be equal");
}
size_t num_batches = num_samples / bs;
EXPECT_GT(num_batches, 0);
batched_data.resize(num_batches);
for (auto &one_batch : batched_data) {
one_batch.resize(datasets.size());
size_t i = 0;
for (auto it = datasets.begin(); it != datasets.end(); ++it) {
auto &slot = one_batch[i];
slot.name = it->first;
slot.data.resize(bs);
slot.lod.resize(bs + 1);
slot.lod[0] = 0;
auto &lod = slot.lod;
auto &datas = it->second;
for (int k = 0; k < bs; ++k) {
size_t id = k + batch_iter * bs;
std::copy(datas[id].begin(), datas[id].end(),
std::back_inserter(slot.data[k]));
size_t len = datas[id].size() / 11;
PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
"%s %d size should be divisible", slot.name, id);
lod[k + 1] = lod[k] + len;
}
slot.shape.assign({static_cast<int>(lod[bs]), 11});
i++;
}
}
}
const std::vector<OneSlotInBatch> &NextBatch() {
if (batch_iter >= batched_data.size() - 1) {
batch_iter = -1;
}
return batched_data[++batch_iter];
}
};
static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
tensor->name = slot.name + "_embed";
tensor->shape = slot.shape;
tensor->dtype = PaddleDType::FLOAT32;
tensor->lod.clear();
tensor->lod.emplace_back(slot.lod);
TensorAssignData(tensor, slot.data);
}
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
const auto &one_batch = data->NextBatch();
input_slots->resize(one_batch.size());
for (size_t i = 0; i < one_batch.size(); ++i) {
auto &slot = one_batch[i];
TensorAssignSlot(&((*input_slots)[i]), slot);
}
}
void SetConfig(AnalysisConfig *cfg) { void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params"; cfg->param_file = FLAGS_infer_model + "/params";
cfg->prog_file = FLAGS_infer_model + "/model"; cfg->prog_file = FLAGS_infer_model + "/model";
@ -27,62 +128,22 @@ void SetConfig(AnalysisConfig *cfg) {
cfg->device = 0; cfg->device = 0;
cfg->enable_ir_optim = true; cfg->enable_ir_optim = true;
cfg->specify_input_name = true; cfg->specify_input_name = true;
cfg->pass_builder()->TurnOnDebug();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads); cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
} }
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) { void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
std::vector<std::string> feed_names = { DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
"slot10000_embed", "slot10001_embed", "slot10004_embed", std::vector<PaddleTensor> input_slots;
"slot10005_embed", "slot10008_embed", "slot10009_embed", int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
"slot10012_embed", "slot10013_embed", "slot10108_embed", LOG(INFO) << "number of samples: "
"slot13324_embed", "slot13325_embed", "slot13326_embed", << data.batched_data.size() * FLAGS_batch_size;
"slot13327_embed", "slot13328_embed", "slot13329_embed", for (int bid = 0; bid < epoch; ++bid) {
"slot13330_embed", "slot13331_embed", "slot15501_embed", PrepareInputs(&input_slots, &data);
"slot15502_embed", "slot15503_embed", "slot15504_embed", (*inputs).emplace_back(input_slots);
"slot15505_embed", "slot15506_embed", "slot15507_embed", }
"slot15508_embed", "slot15516_embed", "slot15519_embed",
"slot15523_embed", "slot15531_embed", "slot15533_embed",
"slot15548_embed", "slot15564_embed", "slot15565_embed",
"slot15566_embed", "slot15570_embed", "slot15571_embed",
"slot15572_embed", "slot15573_embed", "slot15574_embed",
"slot15575_embed", "slot15576_embed", "slot15577_embed",
"slot15579_embed", "slot15581_embed", "slot15582_embed",
"slot15583_embed", "slot15584_embed", "slot5016_embed",
"slot5021_embed", "slot6002_embed", "slot6003_embed",
"slot6004_embed", "slot6005_embed", "slot6006_embed",
"slot6007_embed", "slot6008_embed", "slot6009_embed",
"slot6011_embed", "slot6014_embed", "slot6015_embed",
"slot6023_embed", "slot6024_embed", "slot6025_embed",
"slot6027_embed", "slot6029_embed", "slot6031_embed",
"slot6034_embed", "slot6035_embed", "slot6036_embed",
"slot6037_embed", "slot6039_embed", "slot6048_embed",
"slot6050_embed", "slot6058_embed", "slot6059_embed",
"slot6060_embed", "slot6066_embed", "slot6067_embed",
"slot6068_embed", "slot6069_embed", "slot6070_embed",
"slot6071_embed", "slot6072_embed", "slot6073_embed",
"slot6182_embed", "slot6183_embed", "slot6184_embed",
"slot6185_embed", "slot6186_embed", "slot6188_embed",
"slot6189_embed", "slot6190_embed", "slot6201_embed",
"slot6202_embed", "slot6203_embed", "slot6247_embed",
"slot6248_embed", "slot6250_embed", "slot6251_embed",
"slot6807_embed", "slot6808_embed", "slot6809_embed",
"slot6810_embed", "slot6811_embed", "slot6812_embed",
"slot6813_embed", "slot6814_embed", "slot6815_embed",
"slot6816_embed", "slot6817_embed", "slot6818_embed",
"slot6819_embed", "slot6820_embed", "slot6822_embed",
"slot6823_embed", "slot6826_embed", "slot7002_embed",
"slot7003_embed", "slot7004_embed", "slot7005_embed",
"slot7006_embed", "slot7008_embed", "slot7009_embed",
"slot7010_embed", "slot7011_embed", "slot7013_embed",
"slot7014_embed", "slot7015_embed", "slot7016_embed",
"slot7017_embed", "slot7019_embed", "slot7100_embed",
"slot7506_embed", "slot7507_embed", "slot7514_embed",
"slot7515_embed", "slot7516_embed"};
SetFakeImageInput(inputs, FLAGS_infer_model, true, "model", "params",
&feed_names);
} }
// Easy for profiling independently.
void profile(bool use_mkldnn = false) { void profile(bool use_mkldnn = false) {
AnalysisConfig cfg; AnalysisConfig cfg;
SetConfig(&cfg); SetConfig(&cfg);
@ -100,6 +161,17 @@ void profile(bool use_mkldnn = false) {
TEST(Analyzer_seq_pool1, profile) { profile(); } TEST(Analyzer_seq_pool1, profile) { profile(); }
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Check the fuse status // Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) { TEST(Analyzer_seq_pool1, fuse_statis) {
AnalysisConfig cfg; AnalysisConfig cfg;

Loading…
Cancel
Save