|
|
|
@ -14,10 +14,11 @@
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
|
from paddle.fluid.framework import Program, program_guard, default_main_program, default_startup_program
|
|
|
|
|
from paddle.fluid.framework import Program, program_guard
|
|
|
|
|
from paddle.fluid.executor import Executor
|
|
|
|
|
from paddle.fluid.optimizer import MomentumOptimizer
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import unittest
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
@ -31,14 +32,13 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
label = layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
limit = layers.fill_constant_batch_size_like(
|
|
|
|
|
input=label, dtype='int64', shape=[1], value=5.0)
|
|
|
|
|
limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
|
|
|
|
|
cond = layers.less_than(x=label, y=limit)
|
|
|
|
|
true_image, false_image = layers.split_lod_tensor(
|
|
|
|
|
input=image, mask=cond)
|
|
|
|
|
|
|
|
|
|
true_out = layers.create_tensor(dtype='float32')
|
|
|
|
|
true_cond = layers.ConditionalBlock([true_image])
|
|
|
|
|
true_cond = layers.ConditionalBlock([cond])
|
|
|
|
|
|
|
|
|
|
with true_cond.block():
|
|
|
|
|
hidden = layers.fc(input=true_image, size=100, act='tanh')
|
|
|
|
@ -46,7 +46,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
layers.assign(input=prob, output=true_out)
|
|
|
|
|
|
|
|
|
|
false_out = layers.create_tensor(dtype='float32')
|
|
|
|
|
false_cond = layers.ConditionalBlock([false_image])
|
|
|
|
|
false_cond = layers.ConditionalBlock([cond])
|
|
|
|
|
|
|
|
|
|
with false_cond.block():
|
|
|
|
|
hidden = layers.fc(input=false_image, size=200, act='tanh')
|
|
|
|
@ -64,7 +64,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
|
|
|
batch_size=200)
|
|
|
|
|
batch_size=10)
|
|
|
|
|
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
exe = Executor(place)
|
|
|
|
@ -94,8 +94,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
label = layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
limit = layers.fill_constant_batch_size_like(
|
|
|
|
|
input=label, dtype='int64', shape=[1], value=5.0)
|
|
|
|
|
limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
|
|
|
|
|
cond = layers.less_than(x=label, y=limit)
|
|
|
|
|
ie = layers.IfElse(cond)
|
|
|
|
|
|
|
|
|
@ -125,7 +124,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
exe = Executor(place)
|
|
|
|
|
|
|
|
|
|
exe.run(kwargs['startup_program'])
|
|
|
|
|
exe.run(startup_prog)
|
|
|
|
|
PASS_NUM = 100
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
for data in train_reader():
|
|
|
|
@ -133,7 +132,7 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
|
|
|
y_data = y_data.reshape((y_data.shape[0], 1))
|
|
|
|
|
|
|
|
|
|
outs = exe.run(kwargs['main_program'],
|
|
|
|
|
outs = exe.run(prog,
|
|
|
|
|
feed={'x': x_data,
|
|
|
|
|
'y': y_data},
|
|
|
|
|
fetch_list=[avg_loss])
|
|
|
|
@ -143,6 +142,67 @@ class TestMNISTIfElseOp(unittest.TestCase):
|
|
|
|
|
self.assertFalse(True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestIfElse(unittest.TestCase):
|
|
|
|
|
def set_test_case(self):
|
|
|
|
|
# condiction is: self.data < self.cond_value
|
|
|
|
|
self.cond_value = 0.5
|
|
|
|
|
self.data = np.random.rand(25, 1).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
def compare_ifelse_op_and_numpy(self, place):
|
|
|
|
|
self.set_test_case()
|
|
|
|
|
|
|
|
|
|
prog = Program()
|
|
|
|
|
startup_prog = Program()
|
|
|
|
|
with program_guard(prog, startup_prog):
|
|
|
|
|
src = layers.data(name='data', shape=[1], dtype='float32')
|
|
|
|
|
cond = layers.fill_constant(
|
|
|
|
|
[1], dtype='float32', value=self.cond_value)
|
|
|
|
|
ifcond = layers.less_than(x=src, y=cond)
|
|
|
|
|
ie = layers.IfElse(ifcond)
|
|
|
|
|
with ie.true_block():
|
|
|
|
|
true_target = ie.input(src)
|
|
|
|
|
ie.output(true_target)
|
|
|
|
|
|
|
|
|
|
with ie.false_block():
|
|
|
|
|
false_target = ie.input(src)
|
|
|
|
|
ie.output(false_target)
|
|
|
|
|
if_out = ie()
|
|
|
|
|
out = layers.reduce_sum(if_out)
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
fetch_list = [out]
|
|
|
|
|
o1, = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={'data': self.data},
|
|
|
|
|
fetch_list=[out])
|
|
|
|
|
o2 = np.sum(self.data)
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(
|
|
|
|
|
o1, o2, atol=1e-8),
|
|
|
|
|
"IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))
|
|
|
|
|
|
|
|
|
|
def test_cpu(self):
|
|
|
|
|
self.compare_ifelse_op_and_numpy(fluid.CPUPlace())
|
|
|
|
|
|
|
|
|
|
def test_cuda(self):
|
|
|
|
|
if not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
self.compare_ifelse_op_and_numpy(fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestIfElseTrueBranch(TestIfElse):
|
|
|
|
|
def set_test_case(self):
|
|
|
|
|
# condiction is: self.data < self.cond_value
|
|
|
|
|
self.cond_value = 10.
|
|
|
|
|
self.data = np.random.rand(25, 1).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestIfElseFalseBranch(TestIfElse):
|
|
|
|
|
def set_test_case(self):
|
|
|
|
|
# condiction is: self.data < self.cond_value
|
|
|
|
|
self.cond_value = -10.
|
|
|
|
|
self.data = np.random.rand(25, 1).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
# temp disable if else unittest since it could be buggy.
|
|
|
|
|
exit(0)
|
|
|
|
|
unittest.main()
|