commit
8f5805d3b3
@ -0,0 +1,184 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This module will download dataset from
|
||||
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
|
||||
and parse train/test set intopaddle reader creators.
|
||||
|
||||
This set contains images of flowers belonging to 102 different categories.
|
||||
The images were acquired by searching the web and taking pictures. There are a
|
||||
minimum of 40 images for each category.
|
||||
|
||||
The database was used in:
|
||||
|
||||
Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
|
||||
number of classes.Proceedings of the Indian Conference on Computer Vision,
|
||||
Graphics and Image Processing (2008)
|
||||
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
|
||||
|
||||
"""
|
||||
import cPickle
|
||||
import itertools
|
||||
from common import download
|
||||
import tarfile
|
||||
import scipy.io as scio
|
||||
from paddle.v2.image import *
|
||||
import os
|
||||
import numpy as np
|
||||
import paddle.v2 as paddle
|
||||
from multiprocessing import cpu_count
|
||||
__all__ = ['train', 'test', 'valid']
|
||||
|
||||
DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
|
||||
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
|
||||
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
|
||||
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
|
||||
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
|
||||
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
|
||||
|
||||
|
||||
def default_mapper(sample):
|
||||
'''
|
||||
map image bytes data to type needed by model input layer
|
||||
'''
|
||||
img, label = sample
|
||||
img = paddle.image.load_image_bytes(img)
|
||||
img = paddle.image.simple_transform(img, 256, 224, True)
|
||||
return img.flatten().astype('float32'), label
|
||||
|
||||
|
||||
def reader_creator(data_file,
|
||||
label_file,
|
||||
setid_file,
|
||||
dataset_name,
|
||||
mapper=default_mapper,
|
||||
buffered_size=1024):
|
||||
'''
|
||||
1. read images from tar file and
|
||||
merge images into batch files in 102flowers.tgz_batch/
|
||||
2. get a reader to read sample from batch file
|
||||
|
||||
:param data_file: downloaded data file
|
||||
:type data_file: string
|
||||
:param label_file: downloaded label file
|
||||
:type label_file: string
|
||||
:param setid_file: downloaded setid file containing information
|
||||
about how to split dataset
|
||||
:type setid_file: string
|
||||
:param dataset_name: data set name (tstid|trnid|valid)
|
||||
:type dataset_name: string
|
||||
:param mapper: a function to map image bytes data to type
|
||||
needed by model input layer
|
||||
:type mapper: callable
|
||||
:param buffered_size: the size of buffer used to process images
|
||||
:type buffered_size: int
|
||||
:return: data reader
|
||||
:rtype: callable
|
||||
'''
|
||||
labels = scio.loadmat(label_file)['labels'][0]
|
||||
indexes = scio.loadmat(setid_file)[dataset_name][0]
|
||||
img2label = {}
|
||||
for i in indexes:
|
||||
img = "jpg/image_%05d.jpg" % i
|
||||
img2label[img] = labels[i - 1]
|
||||
file_list = batch_images_from_tar(data_file, dataset_name, img2label)
|
||||
|
||||
def reader():
|
||||
for file in open(file_list):
|
||||
file = file.strip()
|
||||
batch = None
|
||||
with open(file, 'r') as f:
|
||||
batch = cPickle.load(f)
|
||||
data = batch['data']
|
||||
labels = batch['label']
|
||||
for sample, label in itertools.izip(data, batch['label']):
|
||||
yield sample, int(label)
|
||||
|
||||
return paddle.reader.xmap_readers(mapper, reader,
|
||||
cpu_count(), buffered_size)
|
||||
|
||||
|
||||
def train(mapper=default_mapper, buffered_size=1024):
|
||||
'''
|
||||
Create flowers training set reader.
|
||||
It returns a reader, each sample in the reader is
|
||||
image pixels in [0, 1] and label in [1, 102]
|
||||
translated from original color image by steps:
|
||||
1. resize to 256*256
|
||||
2. random crop to 224*224
|
||||
3. flatten
|
||||
:param mapper: a function to map sample.
|
||||
:type mapper: callable
|
||||
:param buffered_size: the size of buffer used to process images
|
||||
:type buffered_size: int
|
||||
:return: train data reader
|
||||
:rtype: callable
|
||||
'''
|
||||
return reader_creator(
|
||||
download(DATA_URL, 'flowers', DATA_MD5),
|
||||
download(LABEL_URL, 'flowers', LABEL_MD5),
|
||||
download(SETID_URL, 'flowers', SETID_MD5), 'trnid', mapper,
|
||||
buffered_size)
|
||||
|
||||
|
||||
def test(mapper=default_mapper, buffered_size=1024):
|
||||
'''
|
||||
Create flowers test set reader.
|
||||
It returns a reader, each sample in the reader is
|
||||
image pixels in [0, 1] and label in [1, 102]
|
||||
translated from original color image by steps:
|
||||
1. resize to 256*256
|
||||
2. random crop to 224*224
|
||||
3. flatten
|
||||
:param mapper: a function to map sample.
|
||||
:type mapper: callable
|
||||
:param buffered_size: the size of buffer used to process images
|
||||
:type buffered_size: int
|
||||
:return: test data reader
|
||||
:rtype: callable
|
||||
'''
|
||||
return reader_creator(
|
||||
download(DATA_URL, 'flowers', DATA_MD5),
|
||||
download(LABEL_URL, 'flowers', LABEL_MD5),
|
||||
download(SETID_URL, 'flowers', SETID_MD5), 'tstid', mapper,
|
||||
buffered_size)
|
||||
|
||||
|
||||
def valid(mapper=default_mapper, buffered_size=1024):
|
||||
'''
|
||||
Create flowers validation set reader.
|
||||
It returns a reader, each sample in the reader is
|
||||
image pixels in [0, 1] and label in [1, 102]
|
||||
translated from original color image by steps:
|
||||
1. resize to 256*256
|
||||
2. random crop to 224*224
|
||||
3. flatten
|
||||
:param mapper: a function to map sample.
|
||||
:type mapper: callable
|
||||
:param buffered_size: the size of buffer used to process images
|
||||
:type buffered_size: int
|
||||
:return: test data reader
|
||||
:rtype: callable
|
||||
'''
|
||||
return reader_creator(
|
||||
download(DATA_URL, 'flowers', DATA_MD5),
|
||||
download(LABEL_URL, 'flowers', LABEL_MD5),
|
||||
download(SETID_URL, 'flowers', SETID_MD5), 'valid', mapper,
|
||||
buffered_size)
|
||||
|
||||
|
||||
def fetch():
|
||||
download(DATA_URL, 'flowers', DATA_MD5)
|
||||
download(LABEL_URL, 'flowers', LABEL_MD5)
|
||||
download(SETID_URL, 'flowers', SETID_MD5)
|
@ -0,0 +1,51 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.v2.dataset.flowers
|
||||
import unittest
|
||||
|
||||
|
||||
class TestFlowers(unittest.TestCase):
|
||||
def check_reader(self, reader):
|
||||
sum = 0
|
||||
label = 0
|
||||
size = 224 * 224 * 3
|
||||
for l in reader():
|
||||
self.assertEqual(l[0].size, size)
|
||||
if l[1] > label:
|
||||
label = l[1]
|
||||
sum += 1
|
||||
return sum, label
|
||||
|
||||
def test_train(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.flowers.train())
|
||||
self.assertEqual(instances, 1020)
|
||||
self.assertEqual(max_label_value, 102)
|
||||
|
||||
def test_test(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.flowers.test())
|
||||
self.assertEqual(instances, 6149)
|
||||
self.assertEqual(max_label_value, 102)
|
||||
|
||||
def test_valid(self):
|
||||
instances, max_label_value = self.check_reader(
|
||||
paddle.v2.dataset.flowers.valid())
|
||||
self.assertEqual(instances, 1020)
|
||||
self.assertEqual(max_label_value, 102)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue