add load_op_xpu for Baidu Kunlun (#27817)
* add load_op_xpu for Baidu Kunlun, test=kunlun * add is_compiled_with_xpu for unit test, test=kunlun * add is_compiled_with_xpu for unit test, test=kunlunmy_2.0rc
parent
84d8e49de8
commit
8fa4c09889
@ -0,0 +1,28 @@
|
|||||||
|
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#ifdef PADDLE_WITH_XPU
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/load_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
load, ops::LoadOpKernel<paddle::platform::XPUDeviceContext, float>,
|
||||||
|
ops::LoadOpKernel<paddle::platform::XPUDeviceContext, double>,
|
||||||
|
ops::LoadOpKernel<paddle::platform::XPUDeviceContext, int>,
|
||||||
|
ops::LoadOpKernel<paddle::platform::XPUDeviceContext, int8_t>,
|
||||||
|
ops::LoadOpKernel<paddle::platform::XPUDeviceContext, int64_t>);
|
||||||
|
|
||||||
|
#endif // PADDLE_WITH_XPU
|
||||||
@ -0,0 +1,63 @@
|
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest, randomize_probability
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.layers as layers
|
||||||
|
import paddle
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||||
|
"core is not compiled with XPU")
|
||||||
|
class TestLoadOpXpu(unittest.TestCase):
|
||||||
|
""" Test load operator.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.ones = np.ones((4, 4)).astype('float32')
|
||||||
|
main_prog = fluid.Program()
|
||||||
|
start_prog = fluid.Program()
|
||||||
|
with fluid.program_guard(main_prog, start_prog):
|
||||||
|
input = fluid.data('input', shape=[-1, 4], dtype='float32')
|
||||||
|
output = layers.fc(
|
||||||
|
input,
|
||||||
|
4,
|
||||||
|
param_attr=fluid.ParamAttr(
|
||||||
|
name='w',
|
||||||
|
initializer=fluid.initializer.NumpyArrayInitializer(
|
||||||
|
self.ones)))
|
||||||
|
exe = fluid.Executor(fluid.XPUPlace(0))
|
||||||
|
exe.run(start_prog)
|
||||||
|
fluid.io.save_persistables(
|
||||||
|
exe, dirname="/tmp/model", main_program=main_prog)
|
||||||
|
|
||||||
|
def test_load_xpu(self):
|
||||||
|
main_prog = fluid.Program()
|
||||||
|
start_prog = fluid.Program()
|
||||||
|
with fluid.program_guard(main_prog, start_prog):
|
||||||
|
var = layers.create_tensor(dtype='float32')
|
||||||
|
layers.load(var, file_path='/tmp/model/w')
|
||||||
|
|
||||||
|
exe = fluid.Executor(fluid.XPUPlace(0))
|
||||||
|
exe.run(start_prog)
|
||||||
|
ret = exe.run(main_prog, fetch_list=[var.name])
|
||||||
|
self.assertTrue(np.array_equal(self.ones, ret[0]))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
||||||
Loading…
Reference in new issue