Merge pull request #4739 from zchen0211/develop
deconv op implementing ...revert-4814-Add_sequence_project_op
commit
8fdc315acc
@ -0,0 +1,107 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/conv2dtranspose_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||
"Input(Input) of Conv2DTransposeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Filter"),
|
||||
"Input(Filter) of Conv2DTransposeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
||||
"Output(Output) of Conv2DTransposeOp should not be null.");
|
||||
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto filter_dims = ctx->GetInputDim("Filter");
|
||||
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
||||
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
||||
|
||||
for (size_t i = 0; i < paddings.size(); ++i) {
|
||||
PADDLE_ENFORCE_EQ(paddings[i], 0,
|
||||
"No Padding allowed in conv transpose op.");
|
||||
}
|
||||
|
||||
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
|
||||
"Conv2DTransposeOp input should be 4-D tensor.");
|
||||
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
|
||||
"Conv2DTransposeOp filter should be 4-D tensor.");
|
||||
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
|
||||
"input and kernel input dimension should be equal.");
|
||||
|
||||
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
|
||||
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
|
||||
ctx->SetOutputDim("Output",
|
||||
{in_dims[0], filter_dims[1], output_height, output_width});
|
||||
}
|
||||
|
||||
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
|
||||
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput(
|
||||
"Input",
|
||||
"(Tensor) The input tensor of convolution transpose operator. "
|
||||
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
||||
"number of input channels, H and W is the height and width of image.");
|
||||
AddInput("Filter",
|
||||
"(Tensor) The filter tensor of convolution transpose operator."
|
||||
"The format of the filter tensor is CMHW, where C is the number of "
|
||||
"output image channels, M is the number of input image channels, "
|
||||
"H and W is height and width of filter. "
|
||||
"We enforce groups number == 1 and padding == 0 in "
|
||||
"convolution transpose Scenario.");
|
||||
AddOutput("Output",
|
||||
"(Tensor) The output tensor of convolution transpose operator."
|
||||
"The format of output tensor is also NCHW.");
|
||||
AddAttr<std::vector<int>>("strides",
|
||||
"strides of convolution transpose operator.")
|
||||
.SetDefault({1, 1});
|
||||
AddAttr<std::vector<int>>("paddings",
|
||||
"paddings of convolution transpose operator.")
|
||||
.SetDefault({0, 0});
|
||||
AddComment(R"DOC(
|
||||
The convolution transpose operation calculates the output based on the input, filter
|
||||
and strides, paddings, groups parameters. The size of each dimension of the
|
||||
parameters is checked in the infer-shape.
|
||||
)DOC");
|
||||
}
|
||||
|
||||
void Conv2DTransposeOpGrad::InferShape(
|
||||
framework::InferShapeContext* ctx) const {
|
||||
auto in_dims = ctx->GetInputDim("Input");
|
||||
auto filter_dims = ctx->GetInputDim("Filter");
|
||||
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
||||
}
|
||||
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
||||
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(conv2dtranspose, ops::Conv2DTransposeOp,
|
||||
ops::Conv2DTransposeOpMaker, conv2dtranspose_grad,
|
||||
ops::Conv2DTransposeOpGrad);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
conv2dtranspose,
|
||||
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
conv2dtranspose_grad,
|
||||
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,24 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/conv2dtranspose_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
conv2dtranspose,
|
||||
ops::GemmConv2DTransposeKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
conv2dtranspose_grad,
|
||||
ops::GemmConv2DTransposeGradKernel<paddle::platform::GPUPlace, float>);
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,102 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param):
|
||||
# [2, 3, 5, 5]
|
||||
in_n, in_c, in_h, in_w = input_.shape
|
||||
# [3, 6, 3, 3]
|
||||
f_c, out_c, f_h, f_w = filter_.shape
|
||||
assert in_c == f_c
|
||||
|
||||
stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad']
|
||||
out_h = (in_h - 1) * stride[0] + f_h
|
||||
out_w = (in_w - 1) * stride[1] + f_w
|
||||
|
||||
out = np.zeros((in_n, out_c, out_h, out_w))
|
||||
|
||||
for n in range(in_n):
|
||||
for i in range(in_h):
|
||||
for j in range(in_w):
|
||||
input_masked = input_[n, :, i, j] # (c)
|
||||
input_masked = np.reshape(input_masked, (in_c, 1, 1))
|
||||
input_masked = np.tile(input_masked, (1, f_h, f_w))
|
||||
|
||||
for k in range(out_c):
|
||||
tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0)
|
||||
i1, i2 = i * stride[0], i * stride[0] + f_h
|
||||
j1, j2 = j * stride[0], j * stride[0] + f_w
|
||||
out[n, k, i1:i2, j1:j2] += tmp_out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TestConv2dTransposeOp(OpTest):
|
||||
def setUp(self):
|
||||
# init as conv transpose
|
||||
self.init_op_type()
|
||||
|
||||
# [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7]
|
||||
self.init_test_case()
|
||||
|
||||
conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad}
|
||||
input_ = np.random.random(self.input_size).astype("float32")
|
||||
filter_ = np.random.random(self.filter_size).astype("float32")
|
||||
output = conv2dtranspose_forward_naive(input_, filter_,
|
||||
conv2dtranspose_param)
|
||||
# print 'deconv output py', output, output.shape
|
||||
|
||||
self.inputs = {'Input': input_, 'Filter': filter_}
|
||||
self.attrs = {
|
||||
'strides': self.stride,
|
||||
'paddings': self.pad,
|
||||
# 'dilations': self.dilations
|
||||
}
|
||||
self.outputs = {'Output': output}
|
||||
|
||||
def test_check_output(self):
|
||||
print 'check output here'
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(
|
||||
set(['Input', 'Filter']), 'Output', max_relative_error=0.05)
|
||||
|
||||
def test_check_grad_no_filter(self):
|
||||
self.check_grad(
|
||||
['Input'],
|
||||
'Output',
|
||||
max_relative_error=0.05,
|
||||
no_grad_set=set(['Filter']))
|
||||
|
||||
def test_check_grad_no_input(self):
|
||||
self.check_grad(
|
||||
['Filter'],
|
||||
'Output',
|
||||
max_relative_error=0.05,
|
||||
no_grad_set=set(['Input']))
|
||||
|
||||
def init_test_case(self):
|
||||
self.pad = [0, 0]
|
||||
self.stride = [1, 1]
|
||||
self.dilations = [1, 1]
|
||||
self.input_size = [2, 3, 5, 5] # NCHW
|
||||
f_c = self.input_size[1]
|
||||
self.filter_size = [f_c, 6, 3, 3]
|
||||
|
||||
def init_op_type(self):
|
||||
self.op_type = "conv2dtranspose"
|
||||
|
||||
|
||||
"""
|
||||
class TestCudnn(TestConv2dOp):
|
||||
def init_group(self):
|
||||
self.groups = 1
|
||||
|
||||
def init_op_type(self):
|
||||
self.op_type = "conv_cudnn"
|
||||
"""
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue