Merge pull request #4739 from zchen0211/develop
deconv op implementing ...revert-4814-Add_sequence_project_op
commit
8fdc315acc
@ -0,0 +1,107 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/conv2dtranspose_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
||||||
|
"Input(Input) of Conv2DTransposeOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Filter"),
|
||||||
|
"Input(Filter) of Conv2DTransposeOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
||||||
|
"Output(Output) of Conv2DTransposeOp should not be null.");
|
||||||
|
|
||||||
|
auto in_dims = ctx->GetInputDim("Input");
|
||||||
|
auto filter_dims = ctx->GetInputDim("Filter");
|
||||||
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
||||||
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
||||||
|
|
||||||
|
for (size_t i = 0; i < paddings.size(); ++i) {
|
||||||
|
PADDLE_ENFORCE_EQ(paddings[i], 0,
|
||||||
|
"No Padding allowed in conv transpose op.");
|
||||||
|
}
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
|
||||||
|
"Conv2DTransposeOp input should be 4-D tensor.");
|
||||||
|
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
|
||||||
|
"Conv2DTransposeOp filter should be 4-D tensor.");
|
||||||
|
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
|
||||||
|
"input and kernel input dimension should be equal.");
|
||||||
|
|
||||||
|
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
|
||||||
|
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
|
||||||
|
ctx->SetOutputDim("Output",
|
||||||
|
{in_dims[0], filter_dims[1], output_height, output_width});
|
||||||
|
}
|
||||||
|
|
||||||
|
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
|
||||||
|
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput(
|
||||||
|
"Input",
|
||||||
|
"(Tensor) The input tensor of convolution transpose operator. "
|
||||||
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
||||||
|
"number of input channels, H and W is the height and width of image.");
|
||||||
|
AddInput("Filter",
|
||||||
|
"(Tensor) The filter tensor of convolution transpose operator."
|
||||||
|
"The format of the filter tensor is CMHW, where C is the number of "
|
||||||
|
"output image channels, M is the number of input image channels, "
|
||||||
|
"H and W is height and width of filter. "
|
||||||
|
"We enforce groups number == 1 and padding == 0 in "
|
||||||
|
"convolution transpose Scenario.");
|
||||||
|
AddOutput("Output",
|
||||||
|
"(Tensor) The output tensor of convolution transpose operator."
|
||||||
|
"The format of output tensor is also NCHW.");
|
||||||
|
AddAttr<std::vector<int>>("strides",
|
||||||
|
"strides of convolution transpose operator.")
|
||||||
|
.SetDefault({1, 1});
|
||||||
|
AddAttr<std::vector<int>>("paddings",
|
||||||
|
"paddings of convolution transpose operator.")
|
||||||
|
.SetDefault({0, 0});
|
||||||
|
AddComment(R"DOC(
|
||||||
|
The convolution transpose operation calculates the output based on the input, filter
|
||||||
|
and strides, paddings, groups parameters. The size of each dimension of the
|
||||||
|
parameters is checked in the infer-shape.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
|
||||||
|
void Conv2DTransposeOpGrad::InferShape(
|
||||||
|
framework::InferShapeContext* ctx) const {
|
||||||
|
auto in_dims = ctx->GetInputDim("Input");
|
||||||
|
auto filter_dims = ctx->GetInputDim("Filter");
|
||||||
|
if (ctx->HasOutput(framework::GradVarName("Input"))) {
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
|
||||||
|
}
|
||||||
|
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(conv2dtranspose, ops::Conv2DTransposeOp,
|
||||||
|
ops::Conv2DTransposeOpMaker, conv2dtranspose_grad,
|
||||||
|
ops::Conv2DTransposeOpGrad);
|
||||||
|
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
conv2dtranspose,
|
||||||
|
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
conv2dtranspose_grad,
|
||||||
|
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,24 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/conv2dtranspose_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
conv2dtranspose,
|
||||||
|
ops::GemmConv2DTransposeKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
conv2dtranspose_grad,
|
||||||
|
ops::GemmConv2DTransposeGradKernel<paddle::platform::GPUPlace, float>);
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,102 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param):
|
||||||
|
# [2, 3, 5, 5]
|
||||||
|
in_n, in_c, in_h, in_w = input_.shape
|
||||||
|
# [3, 6, 3, 3]
|
||||||
|
f_c, out_c, f_h, f_w = filter_.shape
|
||||||
|
assert in_c == f_c
|
||||||
|
|
||||||
|
stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad']
|
||||||
|
out_h = (in_h - 1) * stride[0] + f_h
|
||||||
|
out_w = (in_w - 1) * stride[1] + f_w
|
||||||
|
|
||||||
|
out = np.zeros((in_n, out_c, out_h, out_w))
|
||||||
|
|
||||||
|
for n in range(in_n):
|
||||||
|
for i in range(in_h):
|
||||||
|
for j in range(in_w):
|
||||||
|
input_masked = input_[n, :, i, j] # (c)
|
||||||
|
input_masked = np.reshape(input_masked, (in_c, 1, 1))
|
||||||
|
input_masked = np.tile(input_masked, (1, f_h, f_w))
|
||||||
|
|
||||||
|
for k in range(out_c):
|
||||||
|
tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0)
|
||||||
|
i1, i2 = i * stride[0], i * stride[0] + f_h
|
||||||
|
j1, j2 = j * stride[0], j * stride[0] + f_w
|
||||||
|
out[n, k, i1:i2, j1:j2] += tmp_out
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class TestConv2dTransposeOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
# init as conv transpose
|
||||||
|
self.init_op_type()
|
||||||
|
|
||||||
|
# [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7]
|
||||||
|
self.init_test_case()
|
||||||
|
|
||||||
|
conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad}
|
||||||
|
input_ = np.random.random(self.input_size).astype("float32")
|
||||||
|
filter_ = np.random.random(self.filter_size).astype("float32")
|
||||||
|
output = conv2dtranspose_forward_naive(input_, filter_,
|
||||||
|
conv2dtranspose_param)
|
||||||
|
# print 'deconv output py', output, output.shape
|
||||||
|
|
||||||
|
self.inputs = {'Input': input_, 'Filter': filter_}
|
||||||
|
self.attrs = {
|
||||||
|
'strides': self.stride,
|
||||||
|
'paddings': self.pad,
|
||||||
|
# 'dilations': self.dilations
|
||||||
|
}
|
||||||
|
self.outputs = {'Output': output}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
print 'check output here'
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(
|
||||||
|
set(['Input', 'Filter']), 'Output', max_relative_error=0.05)
|
||||||
|
|
||||||
|
def test_check_grad_no_filter(self):
|
||||||
|
self.check_grad(
|
||||||
|
['Input'],
|
||||||
|
'Output',
|
||||||
|
max_relative_error=0.05,
|
||||||
|
no_grad_set=set(['Filter']))
|
||||||
|
|
||||||
|
def test_check_grad_no_input(self):
|
||||||
|
self.check_grad(
|
||||||
|
['Filter'],
|
||||||
|
'Output',
|
||||||
|
max_relative_error=0.05,
|
||||||
|
no_grad_set=set(['Input']))
|
||||||
|
|
||||||
|
def init_test_case(self):
|
||||||
|
self.pad = [0, 0]
|
||||||
|
self.stride = [1, 1]
|
||||||
|
self.dilations = [1, 1]
|
||||||
|
self.input_size = [2, 3, 5, 5] # NCHW
|
||||||
|
f_c = self.input_size[1]
|
||||||
|
self.filter_size = [f_c, 6, 3, 3]
|
||||||
|
|
||||||
|
def init_op_type(self):
|
||||||
|
self.op_type = "conv2dtranspose"
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
class TestCudnn(TestConv2dOp):
|
||||||
|
def init_group(self):
|
||||||
|
self.groups = 1
|
||||||
|
|
||||||
|
def init_op_type(self):
|
||||||
|
self.op_type = "conv_cudnn"
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue