Enable mul operator for a ngraph engine (#14801)
* Enable mul operator for a ngraph test=develop * Enable activation ops test test=develop * Remove unused line test=developfor_weibo
parent
b849157e9d
commit
9035bb81fe
@ -0,0 +1,25 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
/*
|
||||
* This file contains the list of the ngraph operators for Paddle.
|
||||
*
|
||||
* ATTENTION: It requires some C++11 features, for lower version C++ or C, we
|
||||
* might release another API.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ops/binary_unnary_op.h"
|
||||
#include "ops/mul_op.h"
|
@ -0,0 +1,52 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_NGRAPH
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include "ngraph/ngraph.hpp"
|
||||
#include "paddle/fluid/platform/ngraph_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace ngraphs {
|
||||
|
||||
template <typename T>
|
||||
static void BuildBinaryNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
||||
auto y = paddle::platform::GetInputNode(op, "Y", ngb_node_map);
|
||||
auto out = std::make_shared<T>(x, y);
|
||||
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void BuildUnaryNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
||||
auto out = std::make_shared<T>(input);
|
||||
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
|
||||
}
|
||||
|
||||
} // namespace ngraphs
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
#endif
|
@ -0,0 +1,134 @@
|
||||
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_NGRAPH
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include "ngraph/ngraph.hpp"
|
||||
#include "paddle/fluid/platform/ngraph_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace ngraphs {
|
||||
|
||||
static void BuildMulNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
|
||||
int x_num_col_dims = op_attrs.Get<int>("x_num_col_dims");
|
||||
int y_num_col_dims = op_attrs.Get<int>("y_num_col_dims");
|
||||
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
||||
auto y = paddle::platform::GetInputNode(op, "Y", ngb_node_map);
|
||||
|
||||
auto x_reshape = x;
|
||||
auto y_reshape = y;
|
||||
|
||||
if (x->get_shape().size() > 2) {
|
||||
auto x_2d = paddle::platform::FlattenTo2d(x->get_shape(), x_num_col_dims);
|
||||
x_reshape = paddle::platform::NgReshaper(x, x_2d);
|
||||
}
|
||||
|
||||
if (y->get_shape().size() > 2) {
|
||||
auto y_2d = paddle::platform::FlattenTo2d(y->get_shape(), y_num_col_dims);
|
||||
y_reshape = paddle::platform::NgReshaper(y, y_2d);
|
||||
}
|
||||
|
||||
std::shared_ptr<ngraph::Node> out =
|
||||
std::make_shared<ngraph::op::Dot>(x_reshape, y_reshape);
|
||||
|
||||
auto dummy_out = paddle::platform::GetOutputNode(op, "Out", ngb_node_map);
|
||||
if (dummy_out && dummy_out->get_shape() != out->get_shape()) {
|
||||
out = paddle::platform::NgReshaper(out, dummy_out->get_shape());
|
||||
}
|
||||
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
|
||||
}
|
||||
|
||||
static void BuildMulGradNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
|
||||
int x_num_col_dims = op_attrs.Get<int>("x_num_col_dims");
|
||||
int y_num_col_dims = op_attrs.Get<int>("y_num_col_dims");
|
||||
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
||||
auto y = paddle::platform::GetInputNode(op, "Y", ngb_node_map);
|
||||
auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
|
||||
|
||||
bool is_dx = paddle::platform::HasOutput(op, "X@GRAD") ? true : false;
|
||||
bool is_dy = paddle::platform::HasOutput(op, "Y@GRAD") ? true : false;
|
||||
|
||||
auto x_shape = x->get_shape();
|
||||
auto y_shape = y->get_shape();
|
||||
|
||||
auto x_reshape = x;
|
||||
auto y_reshape = y;
|
||||
|
||||
if (x_shape.size() > 2) {
|
||||
auto x_2d_shape = paddle::platform::FlattenTo2d(x_shape, x_num_col_dims);
|
||||
x_reshape = paddle::platform::NgReshaper(x, x_2d_shape);
|
||||
}
|
||||
|
||||
if (y_shape.size() > 2) {
|
||||
auto y_2d_shape = paddle::platform::FlattenTo2d(y_shape, y_num_col_dims);
|
||||
y_reshape = paddle::platform::NgReshaper(y, y_2d_shape);
|
||||
}
|
||||
|
||||
auto x_reshape_shape = x_reshape->get_shape();
|
||||
std::reverse(x_reshape_shape.begin(), x_reshape_shape.end());
|
||||
auto x_transpose = std::make_shared<ngraph::op::Reshape>(
|
||||
x_reshape, ngraph::AxisVector{1, 0}, x_reshape_shape);
|
||||
|
||||
auto y_reshape_shape = y_reshape->get_shape();
|
||||
std::reverse(y_reshape_shape.begin(), y_reshape_shape.end());
|
||||
auto y_transpose = std::make_shared<ngraph::op::Reshape>(
|
||||
y_reshape, ngraph::AxisVector{1, 0}, y_reshape_shape);
|
||||
|
||||
if (is_dx) {
|
||||
if (dout->get_shape().size() > 2) {
|
||||
auto dout_2d_shape = paddle::platform::FlattenTo2d(dout->get_shape(), 2);
|
||||
dout = paddle::platform::NgReshaper(dout, dout_2d_shape);
|
||||
}
|
||||
auto dx = std::make_shared<ngraph::op::Dot>(dout, y_transpose);
|
||||
|
||||
if (dx->get_shape() == x_shape) {
|
||||
paddle::platform::SetOutputNode(op, "X@GRAD", dx, ngb_node_map);
|
||||
} else {
|
||||
auto dx_reshape = paddle::platform::NgReshaper(dx, x_shape);
|
||||
paddle::platform::SetOutputNode(op, "X@GRAD", dx_reshape, ngb_node_map);
|
||||
}
|
||||
}
|
||||
|
||||
if (is_dy) {
|
||||
if (dout->get_shape().size() > 2) {
|
||||
auto dout_2d_shape = paddle::platform::FlattenTo2d(dout->get_shape(), 2);
|
||||
dout = paddle::platform::NgReshaper(dout, dout_2d_shape);
|
||||
}
|
||||
auto dy = std::make_shared<ngraph::op::Dot>(x_transpose, dout);
|
||||
|
||||
if (dy->get_shape() == y_shape) {
|
||||
paddle::platform::SetOutputNode(op, "Y@GRAD", dy, ngb_node_map);
|
||||
} else {
|
||||
auto dy_reshape = paddle::platform::NgReshaper(dy, y_shape);
|
||||
paddle::platform::SetOutputNode(op, "Y@GRAD", dy_reshape, ngb_node_map);
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace ngraphs
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
#endif
|
@ -0,0 +1,105 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_NGRAPH
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "ngraph/ngraph.hpp"
|
||||
|
||||
namespace paddle {
|
||||
namespace platform {
|
||||
|
||||
static ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) {
|
||||
auto x1 = std::accumulate(std::begin(sh), std::begin(sh) + num, 1,
|
||||
std::multiplies<size_t>());
|
||||
auto x2 = std::accumulate(std::begin(sh) + num, std::end(sh), 1,
|
||||
std::multiplies<size_t>());
|
||||
size_t x1_l = static_cast<size_t>(x1);
|
||||
size_t x2_l = static_cast<size_t>(x2);
|
||||
return ngraph::Shape{x1_l, x2_l};
|
||||
}
|
||||
|
||||
static std::shared_ptr<ngraph::Node> NgReshaper(
|
||||
std::shared_ptr<ngraph::Node> input, ngraph::Shape shape) {
|
||||
std::vector<size_t> input_order(input->get_shape().size());
|
||||
std::iota(std::begin(input_order), std::end(input_order), 0);
|
||||
return std::make_shared<ngraph::op::Reshape>(
|
||||
input, ngraph::AxisVector(input_order), shape);
|
||||
}
|
||||
|
||||
static std::shared_ptr<ngraph::Node> GetNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
const std::string prm, const paddle::framework::VariableNameMap& var_map,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
auto& var_names = var_map.at(prm);
|
||||
PADDLE_ENFORCE_EQ(var_names.size(), 1,
|
||||
"op %s prm %s expects one associated var", op->Type(), prm);
|
||||
if (ngb_node_map->find(var_names[0]) != ngb_node_map->end()) {
|
||||
return (*ngb_node_map)[var_names[0]];
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
static std::shared_ptr<ngraph::Node> GetInputNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
const std::string prm,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
return GetNode(op, prm, op->Inputs(), ngb_node_map);
|
||||
}
|
||||
|
||||
static std::shared_ptr<ngraph::Node> GetOutputNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
const std::string prm,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
return GetNode(op, prm, op->Outputs(), ngb_node_map);
|
||||
}
|
||||
|
||||
static void SetOutputNode(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
const std::string prm, std::shared_ptr<ngraph::Node> node,
|
||||
std::shared_ptr<
|
||||
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
||||
ngb_node_map) {
|
||||
auto& var_names = op->Outputs().at(prm);
|
||||
if (var_names.size() == 1) {
|
||||
(*ngb_node_map)[var_names[0]] = node;
|
||||
} else if (var_names.size() == 0) {
|
||||
(*ngb_node_map)[""] = node;
|
||||
} else {
|
||||
PADDLE_THROW("prm %s has more than 1 var_names.", prm);
|
||||
}
|
||||
}
|
||||
|
||||
static bool HasOutput(
|
||||
const std::shared_ptr<paddle::framework::OperatorBase>& op,
|
||||
const std::string prm) {
|
||||
auto& outputs = op->Outputs();
|
||||
if (outputs.find(prm) == outputs.end()) return false;
|
||||
return outputs.at(prm).size() > 0;
|
||||
}
|
||||
|
||||
} // namespace platform
|
||||
} // namespace paddle
|
||||
|
||||
#endif
|
@ -0,0 +1,58 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.tests.unittests.op_test import OpTest
|
||||
from paddle.fluid.tests.unittests.test_activation_op import TestRelu, TestTanh
|
||||
|
||||
|
||||
class TestNGRAPHReluDim2(TestRelu):
|
||||
def setUp(self):
|
||||
super(TestNGRAPHReluDim2, self).setUp()
|
||||
|
||||
|
||||
class TestNGRAPHTanhDim2(TestTanh):
|
||||
def setUp(self):
|
||||
super(TestNGRAPHTanhDim2, self).setUp()
|
||||
|
||||
|
||||
class TestNGRAPHReluDim4(TestRelu):
|
||||
def setUp(self):
|
||||
super(TestNGRAPHReluDim4, self).setUp()
|
||||
|
||||
x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
|
||||
# The same reason with TestAbs
|
||||
x[np.abs(x) < 0.005] = 0.02
|
||||
out = np.maximum(x, 0)
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
|
||||
class TestNGRAPHTanhDim4(TestTanh):
|
||||
def setUp(self):
|
||||
super(TestNGRAPHTanhDim4, self).setUp()
|
||||
|
||||
self.inputs = {
|
||||
'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
|
||||
}
|
||||
self.outputs = {'Out': np.tanh(self.inputs['X'])}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,42 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from paddle.fluid.tests.unittests.test_mul_op import TestMulOp, TestMulOp2, TestFP16MulOp1, TestFP16MulOp2
|
||||
|
||||
|
||||
class TestNGRAPHMulOp(TestMulOp):
|
||||
def init_dtype_type(self):
|
||||
pass
|
||||
|
||||
|
||||
class TestNGRAPHMulOp2(TestMulOp2):
|
||||
def init_dtype_type(self):
|
||||
pass
|
||||
|
||||
|
||||
class TestNGRAPHFP16MulOp1(TestFP16MulOp1):
|
||||
def init_dtype_type(self):
|
||||
pass
|
||||
|
||||
|
||||
class TestNGRAPHFP16MulOp2(TestFP16MulOp2):
|
||||
def init_dtype_type(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue