remnove the unsed unittest test=develop (#22999)
* remove the fill_constant_batch_size_like, gaussian_random_batch_size_like and uniform_random_batch_size_like_cn three Op unittestrevert-22710-feature/integrated_ps_api
parent
db40ee86db
commit
91b0a9ab23
@ -1,108 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestFillConstantBatchSizeLikeWhenFirstDimIsBatchSize(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "fill_constant_batch_size_like"
|
||||
self.inputs = {'Input': np.random.random((219, 232)).astype("float32")}
|
||||
self.attrs = {'value': 3.5, 'shape': [-1, 132, 7]}
|
||||
|
||||
out = np.random.random((219, 132, 7)).astype("float32")
|
||||
out.fill(3.5)
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestFillConstantBatchSizeLikeWhenSecondDimIsBatchSize(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "fill_constant_batch_size_like"
|
||||
self.inputs = {'Input': np.random.random((219, 232)).astype("float32")}
|
||||
self.attrs = {
|
||||
'value': 3.5,
|
||||
'shape': [132, -1, 7],
|
||||
'input_dim_idx': 0,
|
||||
'output_dim_idx': 1
|
||||
}
|
||||
|
||||
out = np.random.random((132, 219, 7)).astype("float32")
|
||||
out.fill(3.5)
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestFillConstantBatchSizeLikeInt64(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "fill_constant_batch_size_like"
|
||||
self.inputs = {'Input': np.random.random((219, 232)).astype("int64")}
|
||||
self.attrs = {'value': 5894589485094, 'shape': [-1, 132, 7]}
|
||||
|
||||
out = np.random.random((219, 132, 7)).astype("int64")
|
||||
out.fill(5894589485094)
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestFillConstantBatchSizeLikeWithLoDTensor(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "fill_constant_batch_size_like"
|
||||
self.inputs = {
|
||||
'Input': (np.random.random((31, 28)).astype("float32"),
|
||||
[[9, 14, 8]])
|
||||
}
|
||||
self.attrs = {
|
||||
'value': 3.5,
|
||||
'shape': [-1, 16],
|
||||
'input_dim_idx': 0,
|
||||
'output_dim_idx': 0
|
||||
}
|
||||
|
||||
out = np.random.random((3, 16)).astype("float32")
|
||||
out.fill(3.5)
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
# Test python API
|
||||
class TestFillConstantBatchSizeLikeAPI(unittest.TestCase):
|
||||
def test_api(self):
|
||||
like = fluid.layers.fill_constant(
|
||||
shape=[1, 200], value=10, dtype='int64')
|
||||
out = fluid.layers.fill_constant_batch_size_like(
|
||||
input=like, shape=[2, 300], value=1315454564656, dtype='int64')
|
||||
exe = fluid.Executor(place=fluid.CPUPlace())
|
||||
res, = exe.run(fluid.default_main_program(), fetch_list=[out])
|
||||
|
||||
assert np.array_equal(
|
||||
res[0], np.full(
|
||||
[300], 1315454564656, dtype="int64"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -1,48 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestGaussianRandomBatchSizeLike(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "gaussian_random_batch_size_like"
|
||||
self.inputs = {'Input': np.zeros((500, 2000), dtype="float32")}
|
||||
self.attrs = {'mean': 1., 'std': 2., 'shape': [-1, 2000]}
|
||||
self.outputs = {'Out': np.zeros((500, 2000), dtype='float32')}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_customized(self.verify_output)
|
||||
|
||||
def verify_output(self, outs):
|
||||
self.assertEqual(outs[0].shape, (500, 2000))
|
||||
hist, _ = np.histogram(outs[0], range=(-3, 5))
|
||||
hist = hist.astype("float32")
|
||||
hist /= float(outs[0].size)
|
||||
data = np.random.normal(size=(500, 2000), loc=1, scale=2)
|
||||
hist2, _ = np.histogram(data, range=(-3, 5))
|
||||
hist2 = hist2.astype("float32")
|
||||
hist2 /= float(outs[0].size)
|
||||
self.assertTrue(
|
||||
np.allclose(
|
||||
hist, hist2, rtol=0, atol=0.01),
|
||||
"hist: " + str(hist) + " hist2: " + str(hist2))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -1,44 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestUniformRandomBatchSizeLike(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "uniform_random_batch_size_like"
|
||||
self.inputs = {'Input': np.zeros((500, 2000), dtype="float32")}
|
||||
self.attrs = {'min': 1., 'max': 2., 'shape': [-1, 2000]}
|
||||
self.outputs = {'Out': np.zeros((500, 2000), dtype='float32')}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_customized(self.verify_output)
|
||||
|
||||
def verify_output(self, outs):
|
||||
self.assertEqual(outs[0].shape, (500, 2000))
|
||||
hist, _ = np.histogram(outs[0], range=(1, 2))
|
||||
hist = hist.astype("float32")
|
||||
hist /= float(outs[0].size)
|
||||
prob = 0.1 * np.ones((10))
|
||||
self.assertTrue(
|
||||
np.allclose(
|
||||
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue