commit
91d2a57a2e
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,159 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "TensorType.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
*\brief Depthwise convolution forward. The outputData
|
||||
* of depthwise convolution is same with ExpandConvLayer
|
||||
* when groups equals inputChannels in ExpandConvLayer.
|
||||
*
|
||||
* \param[in] inputData input data.
|
||||
* \param[in] filterData the Paramters of the depthwise conv layer..
|
||||
* \param[in] batchSize batch size of input data.
|
||||
* \param[in] outputChannels channels of outputData.
|
||||
* \param[in] outputHeight height of outputData.
|
||||
* \param[in] outputWidth width of outputData.
|
||||
* \param[in] inputChannels channels of inputData.
|
||||
* \param[in] inputHeight height of inputData.
|
||||
* \param[in] inputWidth width of inputData..
|
||||
* \param[in] filterMultiplier equals to outputChannels/groups_.
|
||||
* \param[in] filterHeight height of filter.
|
||||
* \param[in] filterWidth widht of filter.
|
||||
* \param[in] strideH stride size in height direction.
|
||||
* \param[in] strideW stride size in width direction.
|
||||
* \param[in] paddingH padding size in height direction.
|
||||
* \param[in] paddingW padding size in width direction.
|
||||
* \param[out] outputData outputData.
|
||||
*
|
||||
*/
|
||||
template <DeviceType Device, class T>
|
||||
class DepthwiseConvFunctor {
|
||||
public:
|
||||
void operator()(const T* inputData,
|
||||
const T* filterData,
|
||||
int batchSize,
|
||||
int outputChannels,
|
||||
int outputHeight,
|
||||
int outputWidth,
|
||||
int inputChannels,
|
||||
int inputHeight,
|
||||
int inputWidth,
|
||||
int filterMultiplier,
|
||||
int filterHeight,
|
||||
int filterWidth,
|
||||
int strideH,
|
||||
int strideW,
|
||||
int paddingH,
|
||||
int paddingW,
|
||||
T* outputData);
|
||||
};
|
||||
|
||||
/**
|
||||
*\brief Functor tot compute the depthwise convolution backprop w.r.t input.
|
||||
*
|
||||
*
|
||||
* \param[in] outputGradData the grad data of output.
|
||||
* \param[in] filterData the Paramters of the depthwise conv layer..
|
||||
* \param[in] batchSize batch size of input data.
|
||||
* \param[in] outputChannels channels of outputData.
|
||||
* \param[in] outputHeight height of outputData.
|
||||
* \param[in] outputWidth width of outputData.
|
||||
* \param[in] inputChannels channels of input data.
|
||||
* \param[in] inputHeight height of inputData.
|
||||
* \param[in] inputWidth width of inputData.
|
||||
* \param[in] filterMultiplier equals to outputChannels/groups_.
|
||||
* \param[in] filterHeight height of filter.
|
||||
* \param[in] filterWidth widht of filter.
|
||||
* \param[in] strideH stride size in height direction.
|
||||
* \param[in] strideW stride size in width direction.
|
||||
* \param[in] paddingH padding size in height direction.
|
||||
* \param[in] paddingW padding size in width direction.
|
||||
* \param[out] inputGrad the grad data of input.
|
||||
*
|
||||
*/
|
||||
template <DeviceType Device, class T>
|
||||
class DepthwiseConvGradInputFunctor {
|
||||
public:
|
||||
void operator()(const T* outputGrad,
|
||||
const T* filterData,
|
||||
int batchSize,
|
||||
int outputChannels,
|
||||
int outputHeight,
|
||||
int outputWidth,
|
||||
int inputChannels,
|
||||
int inputHeight,
|
||||
int inputWidth,
|
||||
int filterMultiplier,
|
||||
int filterHeight,
|
||||
int filterWidth,
|
||||
int strideH,
|
||||
int strideW,
|
||||
int paddingH,
|
||||
int paddingW,
|
||||
T* inputGrad);
|
||||
};
|
||||
|
||||
/**
|
||||
*\brief Functor tot compute the depthwise convolution backprop w.r.t filter.
|
||||
*
|
||||
* \param[in] outputGradData the grad data of output.
|
||||
* \param[in] inputData inputData.
|
||||
* \param[in] batchSize batch size of input data.
|
||||
* \param[in] outputChannels channels of outputData.
|
||||
* \param[in] outputHeight height of outputData.
|
||||
* \param[in] outputWidth width of outputData.
|
||||
* \param[in] inputChannels channels of input data.
|
||||
* \param[in] inputHeight height of inputData.
|
||||
* \param[in] inputWidth width of inputData.
|
||||
* \param[in] filterMultiplier equals to outputChannels/groups_.
|
||||
* \param[in] filterHeight height of filter.
|
||||
* \param[in] filterWidth widht of filter.
|
||||
* \param[in] strideH stride size in height direction.
|
||||
* \param[in] strideW stride size in width direction.
|
||||
* \param[in] paddingH padding size in height direction.
|
||||
* \param[in] paddingW padding size in width direction.
|
||||
* \param[in] colData Auxiliary data when calculating filterGrad.
|
||||
* \param[in] multiplierData Auxiliary data when calculating filterGrad.
|
||||
* \param[out] filterGrad the grad data of filter.
|
||||
*
|
||||
*/
|
||||
template <DeviceType Device, class T>
|
||||
class DepthwiseConvGradFilterFunctor {
|
||||
public:
|
||||
void operator()(const T* outputGrad,
|
||||
const T* inputData,
|
||||
int batchSize,
|
||||
int outputChannels,
|
||||
int outputHeight,
|
||||
int outputWidth,
|
||||
int inputChannels,
|
||||
int inputHeight,
|
||||
int inputWidth,
|
||||
int filterMultiplier,
|
||||
int filterHeight,
|
||||
int filterWidth,
|
||||
int strideH,
|
||||
int strideW,
|
||||
int paddingH,
|
||||
int paddingW,
|
||||
T* colData,
|
||||
T* filterGrad);
|
||||
};
|
||||
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue