parent
5f21709938
commit
91d4fc6941
@ -0,0 +1,98 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/tensor.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||
|
||||
template <typename T>
|
||||
struct ValueClip {
|
||||
HOSTDEVICE T operator()(const T& x) const {
|
||||
const T kThreshold = -64.;
|
||||
return x < kThreshold ? kThreshold : x;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
void SoftmaxFunctor<Place, T>::operator()(
|
||||
const platform::DeviceContext& context, const framework::Tensor* X,
|
||||
framework::Tensor* Y) {
|
||||
auto logits = EigenMatrix<T>::From(*X);
|
||||
auto softmax = EigenMatrix<T>::From(*Y);
|
||||
|
||||
const int kBatchDim = 0;
|
||||
const int kClassDim = 1;
|
||||
|
||||
const int batch_size = logits.dimension(kBatchDim);
|
||||
const int num_classes = logits.dimension(kClassDim);
|
||||
|
||||
Eigen::DSizes<int, 1> along_class(kClassDim);
|
||||
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
||||
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
||||
|
||||
auto shifted_logits = (logits -
|
||||
logits.maximum(along_class)
|
||||
.eval()
|
||||
.reshape(batch_by_one)
|
||||
.broadcast(one_by_class))
|
||||
.unaryExpr(ValueClip<T>());
|
||||
|
||||
softmax.device(*context.GetEigenDevice<Place>()) = shifted_logits.exp();
|
||||
softmax.device(*context.GetEigenDevice<Place>()) =
|
||||
(softmax *
|
||||
softmax.sum(along_class)
|
||||
.inverse()
|
||||
.eval()
|
||||
.reshape(batch_by_one)
|
||||
.broadcast(one_by_class));
|
||||
}
|
||||
|
||||
template <typename Place, typename T>
|
||||
void SoftmaxGradFunctor<Place, T>::operator()(
|
||||
const platform::DeviceContext& context, const framework::Tensor* y,
|
||||
const framework::Tensor* y_grad, framework::Tensor* x_grad) {
|
||||
auto softmax = EigenMatrix<T>::From(*y);
|
||||
auto softmax_grad = EigenMatrix<T>::From(*y_grad);
|
||||
auto logits_grad = EigenMatrix<T>::From(*x_grad);
|
||||
|
||||
const int kBatchDim = 0;
|
||||
const int kClassDim = 1;
|
||||
|
||||
const int batch_size = softmax.dimension(kBatchDim);
|
||||
const int num_classes = softmax.dimension(kClassDim);
|
||||
|
||||
Eigen::DSizes<int, 1> along_class(kClassDim);
|
||||
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
||||
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
||||
|
||||
auto dot = (softmax * softmax_grad)
|
||||
.sum(along_class)
|
||||
.eval()
|
||||
.reshape(batch_by_one)
|
||||
.broadcast(one_by_class);
|
||||
logits_grad.device(*context.GetEigenDevice<Place>()) =
|
||||
(softmax_grad - dot) * softmax;
|
||||
}
|
||||
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue