parent
ec59f0d454
commit
93cc29abc0
@ -0,0 +1,149 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
from test_fusion_lstm_op import fc, ACTIVATION
|
||||||
|
|
||||||
|
|
||||||
|
def attention_lstm(
|
||||||
|
x, # T x M
|
||||||
|
lod, # 1 x N
|
||||||
|
h0, # N x D
|
||||||
|
c0, # N x D
|
||||||
|
fcws, # (M+D) x 1, 1x1
|
||||||
|
fcbs, # 1 x 1, 1x1
|
||||||
|
w, # (M+D) x 4D
|
||||||
|
b, # 1 x 4D
|
||||||
|
act_gate,
|
||||||
|
act_cell,
|
||||||
|
act_cand):
|
||||||
|
hidden
|
||||||
|
cell
|
||||||
|
return hidden, cell
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionLSTMOp(OpTest):
|
||||||
|
def set_conf(self):
|
||||||
|
self.lod = [[3]]
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = 'attention_lstm'
|
||||||
|
self.lod = [[3]]
|
||||||
|
self.M = 30
|
||||||
|
self.D = 15
|
||||||
|
self.has_initial_hidden = True
|
||||||
|
self.act_gate = 'sigmoid'
|
||||||
|
self.act_cell = 'tanh'
|
||||||
|
self.act_cand = 'tanh'
|
||||||
|
self.set_conf()
|
||||||
|
|
||||||
|
T = sum(self.lod[0])
|
||||||
|
bs = len(self.lod[0])
|
||||||
|
|
||||||
|
x = np.random.normal(size=(T, self.M)).astype('float32')
|
||||||
|
c0 = np.random.normal(size=(bs, self.D)).astype('float32')
|
||||||
|
if self.has_initial_hidden:
|
||||||
|
h0 = np.random.normal(size=(bs, self.D)).astype('float32')
|
||||||
|
else:
|
||||||
|
h0 = np.zeros((bs, self.D)).astype('float32')
|
||||||
|
|
||||||
|
fcw1 = np.random.normal(size=(self.M + self.D, 1)).astype('float32')
|
||||||
|
fcb1 = np.random.normal(size=(1, 1)).astype('float32')
|
||||||
|
fcw2 = np.random.normal(size=(1, 1)).astype('float32')
|
||||||
|
fcb2 = np.random.normal(size=(1, 1)).astype('float32')
|
||||||
|
|
||||||
|
# lstm weight and bias
|
||||||
|
w = np.random.normal(size=(self.M + self.D,
|
||||||
|
self.D * 4)).astype('float32')
|
||||||
|
b = np.random.normal(size=(1, self.D * 4)).astype('float32')
|
||||||
|
|
||||||
|
h, c = attention_lstm(x, self.lod, h0, c0, [fcw1, fcw2], [fcb1, fcb2],
|
||||||
|
ACTIVATION[self.act_gate],
|
||||||
|
ACTIVATION[self.act_cell],
|
||||||
|
ACTIVATION[self.act_cand])
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
'X': (x, self.lod),
|
||||||
|
'C0': c0,
|
||||||
|
'AttentionWeight': fcw1,
|
||||||
|
'AttentionBias': fcb1,
|
||||||
|
'AttentionScalar': fcw2,
|
||||||
|
'AttentionScalarBias': fcb2,
|
||||||
|
'LSTMWeight': w,
|
||||||
|
'LSTMBias': b
|
||||||
|
}
|
||||||
|
|
||||||
|
if self.has_initial_hidden:
|
||||||
|
self.inputs['H0'] = h0
|
||||||
|
|
||||||
|
self.outputs = {
|
||||||
|
'Hidden': (h, self.lod),
|
||||||
|
'Cell': (c, self.lod),
|
||||||
|
}
|
||||||
|
self.attrs = {
|
||||||
|
'gate_activation': self.act_gate,
|
||||||
|
'cell_activation': self.act_cell,
|
||||||
|
'candidate_activation': self.act_cand
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpNonInit(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.has_initial_hidden = False
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpMD1(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.M = 36
|
||||||
|
self.D = 8
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpMD2(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.M = 8
|
||||||
|
self.D = 8
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpMD3(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.M = 15
|
||||||
|
self.D = 30
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpBS1(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.lod = [[5]]
|
||||||
|
self.M = 16
|
||||||
|
self.D = 32
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpBS2(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.lod = [[3, 6]]
|
||||||
|
|
||||||
|
|
||||||
|
class TestAttentionOpBS5(TestAttentionLSTMOp):
|
||||||
|
def set_conf(self):
|
||||||
|
self.lod = [[3, 2, 4, 7, 5]]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue