parent
a24691a2a9
commit
9755611938
@ -0,0 +1,158 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
import paddle.fluid.core as core
|
||||
|
||||
|
||||
def nearest_neighbor_interp_np(X, out_h, out_w, out_size=None):
|
||||
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
|
||||
if out_size is not None:
|
||||
out_h = out_size[0]
|
||||
out_w = out_size[1]
|
||||
n, c, in_h, in_w = X.shape
|
||||
|
||||
ratio_h = ratio_w = 0.0
|
||||
if out_h > 1:
|
||||
ratio_h = (in_h - 1.0) / (out_h - 1.0)
|
||||
if out_w > 1:
|
||||
ratio_w = (in_w - 1.0) / (out_w - 1.0)
|
||||
|
||||
out = np.zeros((n, c, out_h, out_w))
|
||||
for i in range(out_h):
|
||||
in_i = int(round(ratio_h * i))
|
||||
for j in range(out_w):
|
||||
in_j = int(round(ratio_w * j))
|
||||
out[:, :, i, j] = X[:, :, in_i, in_j]
|
||||
|
||||
return out.astype(X.dtype)
|
||||
|
||||
|
||||
class TestBilinearInterpOp(OpTest):
|
||||
def setUp(self):
|
||||
self.out_size = None
|
||||
self.init_test_case()
|
||||
self.op_type = "nearest_neighbor_interp"
|
||||
input_np = np.random.random(self.input_shape).astype("float32")
|
||||
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
|
||||
self.out_size)
|
||||
self.inputs = {'X': input_np}
|
||||
if self.out_size is not None:
|
||||
self.inputs['OutSize'] = self.out_size
|
||||
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
|
||||
self.outputs = {'Out': output_np}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out', in_place=True)
|
||||
|
||||
def init_test_case(self):
|
||||
self.input_shape = [2, 3, 4, 4]
|
||||
self.out_h = 2
|
||||
self.out_w = 2
|
||||
self.out_size = np.array([3, 3]).astype("int32")
|
||||
|
||||
|
||||
class TestCase1(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [4, 1, 7, 8]
|
||||
self.out_h = 1
|
||||
self.out_w = 1
|
||||
|
||||
|
||||
class TestCase2(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [3, 3, 9, 6]
|
||||
self.out_h = 12
|
||||
self.out_w = 12
|
||||
|
||||
|
||||
class TestCase3(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [1, 1, 128, 64]
|
||||
self.out_h = 64
|
||||
self.out_w = 128
|
||||
|
||||
|
||||
class TestCase4(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [4, 1, 7, 8]
|
||||
self.out_h = 1
|
||||
self.out_w = 1
|
||||
self.out_size = np.array([2, 2]).astype("int32")
|
||||
|
||||
|
||||
class TestCase5(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [3, 3, 9, 6]
|
||||
self.out_h = 12
|
||||
self.out_w = 12
|
||||
self.out_size = np.array([11, 11]).astype("int32")
|
||||
|
||||
|
||||
class TestCase6(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [1, 1, 128, 64]
|
||||
self.out_h = 64
|
||||
self.out_w = 128
|
||||
self.out_size = np.array([65, 129]).astype("int32")
|
||||
|
||||
|
||||
class TestBilinearInterpOpUint8(OpTest):
|
||||
def setUp(self):
|
||||
self.out_size = None
|
||||
self.init_test_case()
|
||||
self.op_type = "nearest_neighbor_interp"
|
||||
input_np = np.random.randint(
|
||||
low=0, high=256, size=self.input_shape).astype("uint8")
|
||||
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
|
||||
self.out_size)
|
||||
self.inputs = {'X': input_np}
|
||||
if self.out_size is not None:
|
||||
self.inputs['OutSize'] = self.out_size
|
||||
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
|
||||
self.outputs = {'Out': output_np}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(place=core.CPUPlace(), atol=1)
|
||||
|
||||
def init_test_case(self):
|
||||
self.input_shape = [1, 3, 9, 6]
|
||||
self.out_h = 10
|
||||
self.out_w = 9
|
||||
|
||||
|
||||
class TestCase1Uint8(TestBilinearInterpOpUint8):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [2, 3, 128, 64]
|
||||
self.out_h = 120
|
||||
self.out_w = 50
|
||||
|
||||
|
||||
class TestCase2Uint8(TestBilinearInterpOpUint8):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [4, 1, 7, 8]
|
||||
self.out_h = 5
|
||||
self.out_w = 13
|
||||
self.out_size = np.array([6, 15]).astype("int32")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue