parent
befc3e066b
commit
976a6982ba
@ -0,0 +1,173 @@
|
||||
"""
|
||||
CIFAR Dataset.
|
||||
|
||||
URL: https://www.cs.toronto.edu/~kriz/cifar.html
|
||||
|
||||
the default train_creator, test_creator used for CIFAR-10 dataset.
|
||||
"""
|
||||
from config import DATA_HOME
|
||||
import os
|
||||
import hashlib
|
||||
import urllib2
|
||||
import shutil
|
||||
import tarfile
|
||||
import cPickle
|
||||
import itertools
|
||||
import numpy
|
||||
|
||||
__all__ = ['CIFAR10', 'CIFAR100', 'train_creator', 'test_creator']
|
||||
|
||||
|
||||
def __download_file__(filename, url, md5):
|
||||
def __file_ok__():
|
||||
if not os.path.exists(filename):
|
||||
return False
|
||||
md5_hash = hashlib.md5()
|
||||
with open(filename, 'rb') as f:
|
||||
for chunk in iter(lambda: f.read(4096), b""):
|
||||
md5_hash.update(chunk)
|
||||
|
||||
return md5_hash.hexdigest() == md5
|
||||
|
||||
while not __file_ok__():
|
||||
response = urllib2.urlopen(url)
|
||||
with open(filename, mode='wb') as of:
|
||||
shutil.copyfileobj(fsrc=response, fdst=of)
|
||||
|
||||
|
||||
def __read_one_batch__(batch):
|
||||
data = batch['data']
|
||||
labels = batch.get('labels', batch.get('fine_labels', None))
|
||||
assert labels is not None
|
||||
for sample, label in itertools.izip(data, labels):
|
||||
yield (sample / 255.0).astype(numpy.float32), int(label)
|
||||
|
||||
|
||||
CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
|
||||
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
|
||||
CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
|
||||
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
||||
|
||||
|
||||
class CIFAR(object):
|
||||
"""
|
||||
CIFAR dataset reader. The base class for CIFAR-10 and CIFAR-100
|
||||
|
||||
:param url: Download url.
|
||||
:param md5: File md5sum
|
||||
:param meta_filename: Meta file name in package.
|
||||
:param train_filename: Train file name in package.
|
||||
:param test_filename: Test file name in package.
|
||||
"""
|
||||
|
||||
def __init__(self, url, md5, meta_filename, train_filename, test_filename):
|
||||
filename = os.path.split(url)[-1]
|
||||
assert DATA_HOME is not None
|
||||
filepath = os.path.join(DATA_HOME, md5)
|
||||
if not os.path.exists(filepath):
|
||||
os.makedirs(filepath)
|
||||
|
||||
self.__full_file__ = os.path.join(filepath, filename)
|
||||
self.__meta_filename__ = meta_filename
|
||||
self.__train_filename__ = train_filename
|
||||
self.__test_filename__ = test_filename
|
||||
__download_file__(filename=self.__full_file__, url=url, md5=md5)
|
||||
|
||||
def labels(self):
|
||||
"""
|
||||
labels get all dataset label in order.
|
||||
:return: a list of label.
|
||||
:rtype: list[string]
|
||||
"""
|
||||
with tarfile.open(self.__full_file__, mode='r') as f:
|
||||
name = [
|
||||
each_item.name for each_item in f
|
||||
if self.__meta_filename__ in each_item.name
|
||||
][0]
|
||||
meta_f = f.extractfile(name)
|
||||
meta = cPickle.load(meta_f)
|
||||
for key in meta:
|
||||
if 'label' in key:
|
||||
return meta[key]
|
||||
else:
|
||||
raise RuntimeError("Unexpected branch.")
|
||||
|
||||
def train(self):
|
||||
"""
|
||||
Train Reader
|
||||
"""
|
||||
return self.__read_batch__(self.__train_filename__)
|
||||
|
||||
def test(self):
|
||||
"""
|
||||
Test Reader
|
||||
"""
|
||||
return self.__read_batch__(self.__test_filename__)
|
||||
|
||||
def __read_batch__(self, sub_name):
|
||||
with tarfile.open(self.__full_file__, mode='r') as f:
|
||||
names = (each_item.name for each_item in f
|
||||
if sub_name in each_item.name)
|
||||
|
||||
for name in names:
|
||||
batch = cPickle.load(f.extractfile(name))
|
||||
for item in __read_one_batch__(batch):
|
||||
yield item
|
||||
|
||||
|
||||
class CIFAR10(CIFAR):
|
||||
"""
|
||||
CIFAR-10 dataset, images are classified in 10 classes.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(CIFAR10, self).__init__(
|
||||
CIFAR10_URL,
|
||||
CIFAR10_MD5,
|
||||
meta_filename='batches.meta',
|
||||
train_filename='data_batch',
|
||||
test_filename='test_batch')
|
||||
|
||||
|
||||
class CIFAR100(CIFAR):
|
||||
"""
|
||||
CIFAR-100 dataset, images are classified in 100 classes.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(CIFAR100, self).__init__(
|
||||
CIFAR100_URL,
|
||||
CIFAR100_MD5,
|
||||
meta_filename='meta',
|
||||
train_filename='train',
|
||||
test_filename='test')
|
||||
|
||||
|
||||
def train_creator():
|
||||
"""
|
||||
Default train reader creator. Use CIFAR-10 dataset.
|
||||
"""
|
||||
cifar = CIFAR10()
|
||||
return cifar.train
|
||||
|
||||
|
||||
def test_creator():
|
||||
"""
|
||||
Default test reader creator. Use CIFAR-10 dataset.
|
||||
"""
|
||||
cifar = CIFAR10()
|
||||
return cifar.test
|
||||
|
||||
|
||||
def unittest(label_count=100):
|
||||
cifar = globals()["CIFAR%d" % label_count]()
|
||||
assert len(cifar.labels()) == label_count
|
||||
for _ in cifar.test():
|
||||
pass
|
||||
for _ in cifar.train():
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest(10)
|
||||
unittest(100)
|
Loading…
Reference in new issue