Add docs and clean up unused code

gangliao-patch-1
xuwei06 8 years ago
parent 0cb8a6669e
commit 97c4d23fab

@ -3371,7 +3371,7 @@ def make_importer(config_dir, config_args):
return Import
default_settings = dict(
DEFAULT_SETTING = dict(
batch_size=None,
mini_batch_size=None,
algorithm='async_sgd',
@ -3404,7 +3404,7 @@ default_settings = dict(
adam_beta2=0.999,
adam_epsilon=1e-8, )
settings = copy.deepcopy(default_settings)
settings = copy.deepcopy(DEFAULT_SETTING)
settings_deprecated = dict(usage_ratio=1., )

@ -15,7 +15,6 @@
import copy
import paddle.trainer.config_parser as config_parser
from paddle.proto.TrainerConfig_pb2 import OptimizationConfig
'''
This file is a wrapper of formal config_parser. The main idea of this file is to
separete different config logic into different function, such as network configuration
@ -38,7 +37,7 @@ def parse_network_config(network_conf, config_arg_str=''):
def parse_optimizer_config(optimizer_conf, config_arg_str=''):
config_parser.settings = copy.deepcopy(config_parser.default_settings)
config_parser.settings = copy.deepcopy(config_parser.DEFAULT_SETTING)
optimizer_conf()
opt_config = OptimizationConfig()
for k, v in config_parser.settings.iteritems():

File diff suppressed because it is too large Load Diff

@ -13,8 +13,8 @@
# limitations under the License.
import paddle.trainer_config_helpers.evaluators as evs
import inspect
from config_base import __convert_to_v2__
import inspect
__all__ = []
@ -27,7 +27,8 @@ def initialize():
__ev__ = getattr(evs, __ev_name__)
__new_name__ = convert_to_new_name(__ev_name__)
globals()[__new_name__] = __ev__
globals()[__new_name__] = __convert_to_v2__(__ev__, __new_name__,
__name__)
globals()[__new_name__].__name__ = __new_name__
__all__.append(__new_name__)

@ -12,9 +12,9 @@ class Inference(object):
"""
Inference combines neural network output and parameters together
to do inference.
.. code-block:: python
inferer = Inference(output_layer=prediction, parameters=parameters)
for data_batch in batches:
print inferer.infer(data_batch)
@ -92,8 +92,8 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
.. code-block:: python
result = paddle.infer(output_layer=prediction,
parameters=parameters,
result = paddle.infer(output_layer=prediction,
parameters=parameters,
input=SomeData)
print result
@ -101,14 +101,14 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
.. code-block:: python
result = paddle.infer(output_layer=[prediction1, prediction2],
parameters=parameters,
result = paddle.infer(output_layer=[prediction1, prediction2],
parameters=parameters,
input=SomeData,
field=[id, value]])
print result
:param output_layer: output of the neural network that would be inferred
:type output_layer: paddle.v2.config_base.Layer or a list of
:type output_layer: paddle.v2.config_base.Layer or a list of
paddle.v2.config_base.Layer
:param parameters: parameters of the neural network.
:type parameters: paddle.v2.parameters.Parameters
@ -117,14 +117,14 @@ def infer(output_layer, parameters, input, feeding=None, field='value'):
:type input: collections.Iterable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `id`, `prob`].
`value` and `prob` mean return the prediction probabilities,
:param field: The prediction field. It should in [`value`, `id`, `prob`].
`value` and `prob` mean return the prediction probabilities,
`id` means return the prediction labels. Default is `value`.
Note that `prob` only used when output_layer is beam_search
Note that `prob` only used when output_layer is beam_search
or max_id.
:type field: str
:return: The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
:return: The prediction result. If there are multiple outout_layers and fields,
the return order is outout_layer1.field1, outout_layer2.field1, ...,
outout_layer1.field2, outout_layer2.field2 ...
:rtype: numpy.ndarray
"""

@ -33,26 +33,14 @@ The primary usage shows below.
import collections
import copy
import re
import paddle.trainer_config_helpers.layers as v1_layers
import paddle.trainer.config_parser as cp
from paddle.proto.ModelConfig_pb2 import ModelConfig, SubModelConfig
from config_base import __convert_to_v2__
import config_base
__all__ = ['data', 'parse_network']
__layer_map__ = {}
def __wrap__(f):
def wrapped(*args, **xargs):
out = f(*args, **xargs)
outs = out
if not isinstance(out, collections.Sequence):
outs = [out]
for l in outs:
if isinstance(l, v1_layers.LayerOutput):
__layer_map__[l.full_name] = l
return out
return wrapped
def __need_to_keep__(name):
@ -90,7 +78,7 @@ for name in v1_layers.__all__:
continue
new_name = __convert_name__(name)
if callable(obj) and __need_to_wrap__(name):
globals()[new_name] = __wrap__(obj)
globals()[new_name] = __convert_to_v2__(obj, new_name, __name__)
else:
globals()[new_name] = obj
__all__.append(new_name)
@ -102,9 +90,21 @@ def __data_layer__(name, type, **kwargs):
return l
data = __wrap__(__data_layer__)
def __map_data_docstr__(doc):
doc = re.sub(r'(data = [^\)]+)\).*',
"data = paddle.layer.data(name=\"input\", "
"type=paddle.data_type.dense_vector(1000))", doc)
doc = re.sub(r':param size:.*', ':param type: Data type of this data layer',
doc)
doc = re.sub(r':type size:.*', ":type size: paddle.v2.data_type.InputType",
doc)
return doc
__data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__)
LayerV2 = v1_layers.LayerOutput
data = __convert_to_v2__(__data_layer__, 'name', __name__)
def __get_used_layers__(output_layers, extra_layers=None):
@ -273,7 +273,7 @@ def parse_network(output_layers, extra_layers=None):
def get_layer(name):
return __layer_map__.get(name)
return config_base.__layer_map__.get(name)
cp.begin_parse()

@ -32,6 +32,7 @@ class RNNTest(unittest.TestCase):
def parse_old_rnn():
reset_parser()
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
@ -52,6 +53,7 @@ class RNNTest(unittest.TestCase):
def parse_new_rnn():
reset_parser()
def new_step(y):
mem = layer.memory(name="rnn_state", size=hidden_dim)
out = layer.fc(input=[y, mem],
@ -72,7 +74,6 @@ class RNNTest(unittest.TestCase):
parse_new_rnn().splitlines(1))
print ''.join(diff)
def test_sequence_rnn_multi_input(self):
dict_dim = 10
word_dim = 8
@ -81,6 +82,7 @@ class RNNTest(unittest.TestCase):
def parse_old_rnn():
reset_parser()
def test():
data = conf_helps.data_layer(name="word", size=dict_dim)
label = conf_helps.data_layer(name="label", size=label_dim)

@ -17,34 +17,11 @@ import collections
from paddle.proto.ModelConfig_pb2 import ModelConfig
import paddle.trainer_config_helpers as conf_helps
import layer as v2_layer
import config_base
__all__ = ['Topology']
def __flatten__(lis):
"""
Given a list, possibly nested to any level, return it flattened.
"""
new_lis = []
for item in lis:
if isinstance(item, collections.Sequence):
new_lis.extend(__flatten__(item))
else:
new_lis.append(item)
return new_lis
def __bfs_travel__(callback, *layers):
layers = __flatten__(layers)
for each_layer in layers:
__break__ = callback(each_layer)
if __break__:
return
__layers__ = each_layer.__parent_layers__.values() + \
each_layer.extra_parent()
__bfs_travel__(callback, *__layers__)
class Topology(object):
"""
Topology is used to store the information about all layers
@ -125,5 +102,5 @@ class Topology(object):
def __check_layer_type__(layer):
if not isinstance(layer, v2_layer.LayerV2):
raise ValueError('layer should have type paddle.layer.Layer')
if not isinstance(layer, config_base.Layer):
raise ValueError('layer should have type paddle.v2.config_base.Layer')

Loading…
Cancel
Save