parent
ba43904a5f
commit
987cdf1168
@ -0,0 +1,73 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/clip_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
class ClipOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||||
|
auto max = GetAttr<float>("max");
|
||||||
|
auto min = GetAttr<float>("min");
|
||||||
|
PADDLE_ENFORCE_LT(min, max, "max should be greater than min.");
|
||||||
|
ctx.Output<Tensor>("Out")->Resize(x_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
ClipOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "The input of clip op");
|
||||||
|
AddOutput("Out", "The output of clip op");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Clip Operator.
|
||||||
|
)DOC");
|
||||||
|
AddAttr<float>("min", "min value to be clipped.");
|
||||||
|
AddAttr<float>("max", "max value to be clipped.");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ClipOpGrad : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) should not be null");
|
||||||
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||||
|
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
x_grad->Resize(x_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(clip, ops::ClipOp, ops::ClipOpMaker, clip_grad, ops::ClipOpGrad);
|
||||||
|
REGISTER_OP_CPU_KERNEL(clip,
|
||||||
|
ops::ClipKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(clip_grad, ops::ClipGradKernel<float>);
|
@ -0,0 +1,67 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/clip_op.h"
|
||||||
|
|
||||||
|
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
||||||
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
|
||||||
|
i += blockDim.x * gridDim.x)
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void ClipGradientKernel(const int N, const T min, const T max,
|
||||||
|
const T* Y, const T* dY, T* dX) {
|
||||||
|
CUDA_1D_KERNEL_LOOP(i, N) { dX[i] = dY[i] * (Y[i] > min && Y[i] < max); }
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class ClipGradientOpCUDAKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto max = context.op().GetAttr<float>("max");
|
||||||
|
auto min = context.op().GetAttr<float>("min");
|
||||||
|
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto* x = context.Output<Tensor>("X");
|
||||||
|
auto dims = d_x->dims();
|
||||||
|
size_t count = 1;
|
||||||
|
for (int i = 0; i < dims.size(); ++i) {
|
||||||
|
count *= dims[i];
|
||||||
|
}
|
||||||
|
auto d_x_data = d_x->mutable_data<T>(context.GetPlace());
|
||||||
|
auto d_out_data = d_out->data<T>();
|
||||||
|
auto x_data = x->data<T>();
|
||||||
|
|
||||||
|
int N = d_x->dims()[0];
|
||||||
|
int D = d_x->dims()[1];
|
||||||
|
int block = 512;
|
||||||
|
int grid = (N * D + block - 1) / block;
|
||||||
|
|
||||||
|
ClipGradientKernel<T><<<grid, block>>>(count, min, max, x_data, d_out_data,
|
||||||
|
d_x_data);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(clip,
|
||||||
|
ops::ClipKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(clip_grad, ops::ClipGradientOpCUDAKernel<float>);
|
@ -0,0 +1,70 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class ClipKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto max = context.op().GetAttr<float>("max");
|
||||||
|
auto min = context.op().GetAttr<float>("min");
|
||||||
|
auto* x = context.Input<Tensor>("X");
|
||||||
|
auto* out = context.Output<Tensor>("Out");
|
||||||
|
out->mutable_data<T>(context.GetPlace());
|
||||||
|
auto x_tensor = EigenTensor<T, 2>::From(*x);
|
||||||
|
auto out_tensor = EigenTensor<T, 2>::From(*out);
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
out_tensor.device(place) = x_tensor.cwiseMin(max).cwiseMax(min);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class ClipGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto max = context.op().GetAttr<float>("max");
|
||||||
|
auto min = context.op().GetAttr<float>("min");
|
||||||
|
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto* x = context.Output<Tensor>("X");
|
||||||
|
auto dims = d_x->dims();
|
||||||
|
size_t count = 1;
|
||||||
|
for (int i = 0; i < dims.size(); ++i) {
|
||||||
|
count *= dims[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
auto d_x_data = d_x->mutable_data<T>(context.GetPlace());
|
||||||
|
auto d_out_data = d_out->data<T>();
|
||||||
|
auto x_data = x->data<T>();
|
||||||
|
for (int i = 0; i < count; ++i) {
|
||||||
|
d_x_data[i] = d_out_data[i] * (x_data[i] > min && x_data[i] < max);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,39 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from paddle.v2.framework.op import Operator
|
||||||
|
from gradient_checker import GradientChecker
|
||||||
|
from op_test_util import OpTestMeta
|
||||||
|
|
||||||
|
|
||||||
|
class TestClipOp(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
input = np.random.random((16, 16)).astype("float32")
|
||||||
|
print "input: %s" % input
|
||||||
|
self.type = "clip"
|
||||||
|
self.inputs = {'X': input, }
|
||||||
|
self.attrs = {}
|
||||||
|
self.attrs['min'] = 0.1
|
||||||
|
self.attrs['max'] = 0.9
|
||||||
|
self.outputs = {
|
||||||
|
'Out': np.clip(self.inputs['X'], self.attrs['min'],
|
||||||
|
self.attrs['max'])
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestClipGradOp(GradientChecker):
|
||||||
|
def setUp(self):
|
||||||
|
self.op = Operator(type="clip", X="X", Out="Out", min=0.1, max=0.9)
|
||||||
|
self.inputs = {'X': np.random.random((16, 16)).astype("float32"), }
|
||||||
|
|
||||||
|
def test_normal(self):
|
||||||
|
self.check_grad(
|
||||||
|
self.op, self.inputs, set(["X"]), "Out", max_relative_error=0.5)
|
||||||
|
|
||||||
|
def test_cpu_gpu_compare(self):
|
||||||
|
self.compare_grad(self.op, self.inputs)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue