|
|
|
@ -2667,7 +2667,7 @@ def classification_cost(input, label, name=None,
|
|
|
|
|
|
|
|
|
|
return LayerOutput(name, LayerType.COST, parents=[input, label])
|
|
|
|
|
|
|
|
|
|
def conv_operator(input, filter_size, num_filters,
|
|
|
|
|
def conv_operator(img, filter, filter_size, num_filters,
|
|
|
|
|
num_channel=None, stride=1, padding=0, groups=1,
|
|
|
|
|
filter_size_y=None, stride_y=None, padding_y=None):
|
|
|
|
|
"""
|
|
|
|
@ -2680,13 +2680,16 @@ def conv_operator(input, filter_size, num_filters,
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
op = conv_operator(input=[layer1, layer2],
|
|
|
|
|
op = conv_operator(img=input1,
|
|
|
|
|
filter=input2,
|
|
|
|
|
filter_size=3.0,
|
|
|
|
|
num_filters=64,
|
|
|
|
|
num_channels=64)
|
|
|
|
|
|
|
|
|
|
:param input: Input layer.
|
|
|
|
|
:type input: LayerOutput|list|tuple
|
|
|
|
|
:param img: input image
|
|
|
|
|
:type img: LayerOutput
|
|
|
|
|
:param filter: input filter
|
|
|
|
|
:type filter: LayerOutput
|
|
|
|
|
:param filter_size: The x dimension of a filter kernel.
|
|
|
|
|
:type filter_size: int
|
|
|
|
|
:param filter_size_y: The y dimension of a filter kernel. Since
|
|
|
|
@ -2708,14 +2711,13 @@ def conv_operator(input, filter_size, num_filters,
|
|
|
|
|
:return: A ConvOperator Object.
|
|
|
|
|
:rtype: ConvOperator
|
|
|
|
|
"""
|
|
|
|
|
assert isinstance(input, list) or isinstance(input, tuple)
|
|
|
|
|
if filter_size_y is None:
|
|
|
|
|
filter_size_y = filter_size
|
|
|
|
|
if stride_y is None:
|
|
|
|
|
stride_y = stride
|
|
|
|
|
if padding_y is None:
|
|
|
|
|
padding_y = padding
|
|
|
|
|
op = ConvOperator(input_layer_names=[x.name for x in input],
|
|
|
|
|
op = ConvOperator(input_layer_names=[img.name, filter.name],
|
|
|
|
|
num_filters = num_filter,
|
|
|
|
|
conv_conf=Conv(filter_size=filter_size,
|
|
|
|
|
padding=padding,
|
|
|
|
@ -2725,7 +2727,7 @@ def conv_operator(input, filter_size, num_filters,
|
|
|
|
|
padding_y=padding_y,
|
|
|
|
|
stride_y=stride_y,
|
|
|
|
|
groups=groups))
|
|
|
|
|
op.origin = input
|
|
|
|
|
op.origin = [img, filter]
|
|
|
|
|
op.origin.operator = "conv_op"
|
|
|
|
|
return op
|
|
|
|
|
|
|
|
|
|