|
|
|
@ -41,6 +41,7 @@ void SoftmaxEigen(const DeviceContext& context, const int axis_dim,
|
|
|
|
|
const framework::Tensor* X, framework::Tensor* Y) {
|
|
|
|
|
constexpr int kBatchDim = 0;
|
|
|
|
|
constexpr int kClassDim = 1;
|
|
|
|
|
constexpr int kAxisDim = 1;
|
|
|
|
|
|
|
|
|
|
auto logits = EigenMatrix<T>::From(*X);
|
|
|
|
|
auto softmax = EigenMatrix<T>::From(*Y);
|
|
|
|
@ -49,26 +50,28 @@ void SoftmaxEigen(const DeviceContext& context, const int axis_dim,
|
|
|
|
|
const int num_classes = logits.dimension(kClassDim);
|
|
|
|
|
const int num_remain = num_classes / axis_dim;
|
|
|
|
|
|
|
|
|
|
Eigen::DSizes<int, 1> along_class(kClassDim);
|
|
|
|
|
Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
|
|
|
|
|
Eigen::DSizes<int, 2> one_by_class(1, num_classes);
|
|
|
|
|
Eigen::DSizes<int, 1> along_axis(kAxisDim);
|
|
|
|
|
Eigen::DSizes<int, 2> batch_classes(batch_size, num_classes);
|
|
|
|
|
Eigen::DSizes<int, 3> batch_one_remain(batch_size, 1, num_remain);
|
|
|
|
|
Eigen::DSizes<int, 3> one_axis_one(1, axis_dim, 1);
|
|
|
|
|
Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
|
|
|
|
|
Eigen::DSizes<int, 2> one_axis(1, axis_dim);
|
|
|
|
|
|
|
|
|
|
auto shifted_logits = (logits -
|
|
|
|
|
logits.maximum(along_class)
|
|
|
|
|
auto logits_reshape = logits.reshape(batch_axis_remain);
|
|
|
|
|
auto shifted_logits = (logits_reshape -
|
|
|
|
|
logits_reshape.maximum(along_axis)
|
|
|
|
|
.eval()
|
|
|
|
|
.reshape(batch_by_one)
|
|
|
|
|
.broadcast(one_by_class))
|
|
|
|
|
.reshape(batch_one_remain)
|
|
|
|
|
.broadcast(one_axis_one))
|
|
|
|
|
.unaryExpr(ValueClip<T>());
|
|
|
|
|
|
|
|
|
|
softmax.device(*context.eigen_device()) = shifted_logits.exp();
|
|
|
|
|
softmax.device(*context.eigen_device()) = (softmax *
|
|
|
|
|
softmax.reshape(batch_axis_remain)
|
|
|
|
|
.sum(along_class)
|
|
|
|
|
auto exp = shifted_logits.exp();
|
|
|
|
|
softmax.device(*context.eigen_device()) = (exp *
|
|
|
|
|
exp.sum(along_axis)
|
|
|
|
|
.inverse()
|
|
|
|
|
.eval()
|
|
|
|
|
.broadcast(one_axis));
|
|
|
|
|
.reshape(batch_one_remain)
|
|
|
|
|
.broadcast(one_axis_one))
|
|
|
|
|
.reshape(batch_classes);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T, bool is_test, typename Enable>
|
|
|
|
|