parent
76086df412
commit
9a570fb95e
@ -0,0 +1,97 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.dataset.mnist as mnist
|
||||||
|
import paddle
|
||||||
|
import threading
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
def network(is_train):
|
||||||
|
reader, queue = fluid.layers.py_reader(
|
||||||
|
capacity=10,
|
||||||
|
shapes=((-1, 784), (-1, 1)),
|
||||||
|
dtypes=('float32', 'int64'),
|
||||||
|
name="train_reader" if is_train else "test_reader")
|
||||||
|
img, label = fluid.layers.read_file(fluid.layers.double_buffer(reader))
|
||||||
|
|
||||||
|
hidden = img
|
||||||
|
|
||||||
|
for i in xrange(2):
|
||||||
|
hidden = fluid.layers.fc(input=hidden, size=100, act='tanh')
|
||||||
|
hidden = fluid.layers.dropout(
|
||||||
|
hidden, dropout_prob=0.5, is_test=not is_train)
|
||||||
|
|
||||||
|
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
|
||||||
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
return fluid.layers.mean(loss), queue
|
||||||
|
|
||||||
|
|
||||||
|
def pipe_reader_to_queue(reader_creator, queue):
|
||||||
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||||
|
feeder = fluid.DataFeeder(
|
||||||
|
feed_list=[
|
||||||
|
fluid.layers.data(
|
||||||
|
name='img', dtype='float32', shape=[784]),
|
||||||
|
fluid.layers.data(
|
||||||
|
name='label', dtype='int64', shape=[1])
|
||||||
|
],
|
||||||
|
place=fluid.CPUPlace())
|
||||||
|
|
||||||
|
def __thread_main__():
|
||||||
|
for data in feeder.decorate_reader(
|
||||||
|
reader_creator, multi_devices=False)():
|
||||||
|
tmp = fluid.core.LoDTensorArray()
|
||||||
|
tmp.append(data['img'])
|
||||||
|
tmp.append(data['label'])
|
||||||
|
queue.push(tmp)
|
||||||
|
queue.close()
|
||||||
|
|
||||||
|
th = threading.Thread(target=__thread_main__)
|
||||||
|
th.start()
|
||||||
|
return th
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
train_prog = fluid.Program()
|
||||||
|
startup_prog = fluid.Program()
|
||||||
|
|
||||||
|
with fluid.program_guard(train_prog, startup_prog):
|
||||||
|
with fluid.unique_name.guard():
|
||||||
|
loss, train_queue = network(True)
|
||||||
|
adam = fluid.optimizer.Adam(learning_rate=0.01)
|
||||||
|
adam.minimize(loss)
|
||||||
|
|
||||||
|
test_prog = fluid.Program()
|
||||||
|
with fluid.program_guard(test_prog, fluid.Program()):
|
||||||
|
with fluid.unique_name.guard():
|
||||||
|
test_loss, test_queue = network(False)
|
||||||
|
|
||||||
|
fluid.Executor(fluid.CUDAPlace(0)).run(startup_prog)
|
||||||
|
|
||||||
|
trainer = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
|
||||||
|
tester = fluid.ParallelExecutor(use_cuda=True, share_vars_from=trainer)
|
||||||
|
|
||||||
|
for epoch_id in xrange(10):
|
||||||
|
pipe_reader_to_queue(paddle.batch(mnist.train(), 32), train_queue)
|
||||||
|
pipe_reader_to_queue(paddle.batch(mnist.test(), 32), test_queue)
|
||||||
|
try:
|
||||||
|
print 'train_loss', numpy.array(trainer.run(fetch_list=[loss.name]))
|
||||||
|
except fluid.core.EOFException:
|
||||||
|
print 'End of epoch', epoch_id
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in new issue