Patch math method for VarBase using auto-generated op functions (#21656)
	
		
	
				
					
				
			* patch math method for varbase using auto-generated op functions, test=develop * clean code that handles batch_size, test=develop * follow comments, test=develop * follow comments, test=develop * code clean, test=developpaddle_tiny_install
							parent
							
								
									aa287e19fe
								
							
						
					
					
						commit
						9c481e12ba
					
				@ -0,0 +1,222 @@
 | 
				
			||||
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
from __future__ import print_function
 | 
				
			||||
 | 
				
			||||
from .. import core
 | 
				
			||||
from ..framework import Variable, convert_np_dtype_to_dtype_
 | 
				
			||||
from ..layers.layer_function_generator import OpProtoHolder
 | 
				
			||||
from . import to_variable, no_grad
 | 
				
			||||
 | 
				
			||||
_supported_int_dtype_ = [
 | 
				
			||||
    core.VarDesc.VarType.UINT8,
 | 
				
			||||
    core.VarDesc.VarType.INT8,
 | 
				
			||||
    core.VarDesc.VarType.INT16,
 | 
				
			||||
    core.VarDesc.VarType.INT32,
 | 
				
			||||
    core.VarDesc.VarType.INT64,
 | 
				
			||||
]
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def monkey_patch_math_varbase():
 | 
				
			||||
    """
 | 
				
			||||
    Similar to monkey_patch_variable.
 | 
				
			||||
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
 | 
				
			||||
    """
 | 
				
			||||
 | 
				
			||||
    def safe_get_dtype(var):
 | 
				
			||||
        try:
 | 
				
			||||
            dtype = var.dtype
 | 
				
			||||
        except:
 | 
				
			||||
            raise ValueError("Cannot get data type from %s", var.name)
 | 
				
			||||
        return dtype
 | 
				
			||||
 | 
				
			||||
    @no_grad
 | 
				
			||||
    def create_tensor(value, dtype, shape):
 | 
				
			||||
        value = float(value)
 | 
				
			||||
        inputs = {}
 | 
				
			||||
        attrs = {
 | 
				
			||||
            'dtype': dtype,
 | 
				
			||||
            'shape': shape,
 | 
				
			||||
            'value': value,
 | 
				
			||||
            'force_cpu': False
 | 
				
			||||
        }
 | 
				
			||||
        outs = core.ops.fill_constant(inputs, attrs)
 | 
				
			||||
        outs['Out'][0].stop_gradient = True
 | 
				
			||||
        return outs['Out'][0]
 | 
				
			||||
 | 
				
			||||
    def create_scalar(value, dtype):
 | 
				
			||||
        return create_tensor(value, dtype, shape=[1])
 | 
				
			||||
 | 
				
			||||
    def astype(self, dtype):
 | 
				
			||||
        """
 | 
				
			||||
        **Notes**:
 | 
				
			||||
            **The variable must be a** :ref:`api_fluid_Tensor`
 | 
				
			||||
 | 
				
			||||
        Cast a variable to a specified data type.
 | 
				
			||||
 | 
				
			||||
        Args:
 | 
				
			||||
 | 
				
			||||
            self(Variable): The source variable
 | 
				
			||||
 | 
				
			||||
            dtype: The target data type
 | 
				
			||||
 | 
				
			||||
        Returns:
 | 
				
			||||
            Variable: Variable with new dtype
 | 
				
			||||
 | 
				
			||||
        Examples:
 | 
				
			||||
            In Static Graph Mode:
 | 
				
			||||
 | 
				
			||||
            .. code-block:: python
 | 
				
			||||
 | 
				
			||||
                import paddle.fluid as fluid
 | 
				
			||||
 | 
				
			||||
                startup_prog = fluid.Program()
 | 
				
			||||
                main_prog = fluid.Program()
 | 
				
			||||
                with fluid.program_guard(startup_prog, main_prog):
 | 
				
			||||
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
 | 
				
			||||
                    new_variable = original_variable.astype('int64')
 | 
				
			||||
                    print("new var's dtype is: {}".format(new_variable.dtype))
 | 
				
			||||
 | 
				
			||||
            In Dygraph Mode:
 | 
				
			||||
 | 
				
			||||
            .. code-block:: python
 | 
				
			||||
 | 
				
			||||
                import paddle.fluid as fluid
 | 
				
			||||
                import numpy as np
 | 
				
			||||
 | 
				
			||||
                x = np.ones([2, 2], np.float32)
 | 
				
			||||
                with fluid.dygraph.guard():
 | 
				
			||||
                    original_variable = fluid.dygraph.to_variable(x)
 | 
				
			||||
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
 | 
				
			||||
                    new_variable = original_variable.astype('int64')
 | 
				
			||||
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))
 | 
				
			||||
 | 
				
			||||
        """
 | 
				
			||||
        inputs = {'X': [self]}
 | 
				
			||||
        attrs = {
 | 
				
			||||
            "in_dtype": self.dtype,
 | 
				
			||||
            "out_dtype": convert_np_dtype_to_dtype_(dtype)
 | 
				
			||||
        }
 | 
				
			||||
        outs = core.ops.cast(inputs, attrs)
 | 
				
			||||
        return outs['Out'][0]
 | 
				
			||||
 | 
				
			||||
    def _scalar_elementwise_op_(var, scale, bias):
 | 
				
			||||
        inputs = {'X': [var]}
 | 
				
			||||
        attrs = {"scale": scale, "bias": bias}
 | 
				
			||||
        outs = core.ops.scale(inputs, attrs)
 | 
				
			||||
        return outs['Out'][0]
 | 
				
			||||
 | 
				
			||||
    def _scalar_elementwise_add_(var, value):
 | 
				
			||||
        return _scalar_elementwise_op_(var, 1.0, value)
 | 
				
			||||
 | 
				
			||||
    def _scalar_elementwise_sub_(var, value):
 | 
				
			||||
        return _scalar_elementwise_op_(var, 1.0, -value)
 | 
				
			||||
 | 
				
			||||
    def _scalar_elementwise_rsub_(var, value):
 | 
				
			||||
        return _scalar_elementwise_op_(var, -1.0, value)
 | 
				
			||||
 | 
				
			||||
    def _scalar_elementwise_mul_(var, value):
 | 
				
			||||
        return _scalar_elementwise_op_(var, value, 0.0)
 | 
				
			||||
 | 
				
			||||
    def _scalar_elementwise_div_(var, value):
 | 
				
			||||
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
 | 
				
			||||
 | 
				
			||||
    def _elemwise_method_creator_(method_name,
 | 
				
			||||
                                  op_type,
 | 
				
			||||
                                  reverse=False,
 | 
				
			||||
                                  scalar_method=None):
 | 
				
			||||
        def __impl__(self, other_var):
 | 
				
			||||
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
 | 
				
			||||
            # which may lose accuracy. This is a hot fix for release 1.6.
 | 
				
			||||
            if scalar_method is not None and not (
 | 
				
			||||
                    op_type == 'elementwise_div' and
 | 
				
			||||
                    self.dtype in _supported_int_dtype_):
 | 
				
			||||
                if isinstance(other_var, float):
 | 
				
			||||
                    if self.dtype in _supported_int_dtype_:
 | 
				
			||||
                        assert other_var == int(other_var), \
 | 
				
			||||
                            "float value {} cannot convert to integer".format(other_var)
 | 
				
			||||
                    return scalar_method(self, other_var)
 | 
				
			||||
                elif isinstance(other_var, int):
 | 
				
			||||
                    return scalar_method(self, float(other_var))
 | 
				
			||||
 | 
				
			||||
            lhs_dtype = safe_get_dtype(self)
 | 
				
			||||
 | 
				
			||||
            if not isinstance(other_var, core.VarBase):
 | 
				
			||||
                if reverse:
 | 
				
			||||
                    other_var = create_tensor(
 | 
				
			||||
                        other_var, dtype=lhs_dtype, shape=self.shape)
 | 
				
			||||
                else:
 | 
				
			||||
                    # add fill_op 
 | 
				
			||||
                    other_var = create_scalar(value=other_var, dtype=lhs_dtype)
 | 
				
			||||
 | 
				
			||||
            rhs_dtype = safe_get_dtype(other_var)
 | 
				
			||||
            if lhs_dtype != rhs_dtype:
 | 
				
			||||
                other_var = astype(other_var, lhs_dtype)
 | 
				
			||||
            if reverse:
 | 
				
			||||
                tmp = self
 | 
				
			||||
                self = other_var
 | 
				
			||||
                other_var = tmp
 | 
				
			||||
 | 
				
			||||
            axis = -1
 | 
				
			||||
            op = getattr(core.ops, op_type)
 | 
				
			||||
            inputs = {'X': [self], 'Y': [other_var]}
 | 
				
			||||
            attrs = {'axis': axis}
 | 
				
			||||
            outs = op(inputs, attrs)
 | 
				
			||||
            return outs['Out'][0]
 | 
				
			||||
 | 
				
			||||
        comment = OpProtoHolder.instance().get_op_proto(op_type).comment
 | 
				
			||||
 | 
				
			||||
        __impl__.__doc__ = """
 | 
				
			||||
        {0}
 | 
				
			||||
        Args:
 | 
				
			||||
            self(Variable): left hand variable
 | 
				
			||||
            other_var(Variable|float|int): right hand variable
 | 
				
			||||
 | 
				
			||||
        Returns:
 | 
				
			||||
            Variable
 | 
				
			||||
        """.format(comment)
 | 
				
			||||
        __impl__.__name__ = method_name
 | 
				
			||||
        return __impl__
 | 
				
			||||
 | 
				
			||||
    # inject methods
 | 
				
			||||
    for method_name, op_type, reverse, scalar_method in (
 | 
				
			||||
        ("__add__", "elementwise_add", False, _scalar_elementwise_add_),
 | 
				
			||||
            # a+b == b+a. Do not need to reverse explicitly
 | 
				
			||||
        ("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
 | 
				
			||||
        ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
 | 
				
			||||
        ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
 | 
				
			||||
        ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
 | 
				
			||||
            # a*b == b*a. Do not need to reverse explicitly
 | 
				
			||||
        ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
 | 
				
			||||
        ("__div__", "elementwise_div", False, _scalar_elementwise_div_),
 | 
				
			||||
        ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
 | 
				
			||||
        ("__rdiv__", "elementwise_div", True, None),
 | 
				
			||||
        ("__rtruediv__", "elementwise_div", True, None),
 | 
				
			||||
        ("__pow__", "elementwise_pow", False, None),
 | 
				
			||||
        ("__rpow__", "elementwise_pow", True, None),
 | 
				
			||||
        ("__floordiv__", "elementwise_floordiv", False, None),
 | 
				
			||||
        ("__mod__", "elementwise_mod", False, None),
 | 
				
			||||
            # for logical compare
 | 
				
			||||
        ("__eq__", "equal", False, None),
 | 
				
			||||
        ("__ne__", "not_equal", False, None),
 | 
				
			||||
        ("__lt__", "less_than", False, None),
 | 
				
			||||
        ("__le__", "less_equal", False, None),
 | 
				
			||||
        ("__gt__", "greater_than", False, None),
 | 
				
			||||
        ("__ge__", "greater_equal", False, None)):
 | 
				
			||||
 | 
				
			||||
        setattr(core.VarBase, method_name,
 | 
				
			||||
                _elemwise_method_creator_(method_name, op_type, reverse,
 | 
				
			||||
                                          scalar_method))
 | 
				
			||||
 | 
				
			||||
    core.VarBase.astype = astype
 | 
				
			||||
@ -0,0 +1,206 @@
 | 
				
			||||
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
from __future__ import print_function
 | 
				
			||||
 | 
				
			||||
import unittest
 | 
				
			||||
from decorator_helper import prog_scope
 | 
				
			||||
import paddle.fluid as fluid
 | 
				
			||||
import numpy as np
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestMathOpPatchesVarBase(unittest.TestCase):
 | 
				
			||||
    def setUp(self):
 | 
				
			||||
        self.shape = [10, 10]
 | 
				
			||||
        self.dtype = np.float32
 | 
				
			||||
 | 
				
			||||
    def test_add(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a + b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np + b_np))
 | 
				
			||||
 | 
				
			||||
    def test_sub(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a - b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np - b_np))
 | 
				
			||||
 | 
				
			||||
    def test_mul(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a * b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np * b_np))
 | 
				
			||||
 | 
				
			||||
    def test_div(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a / b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np / b_np))
 | 
				
			||||
 | 
				
			||||
    def test_add_scalar(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = 0.1
 | 
				
			||||
            res = a + b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np + b))
 | 
				
			||||
 | 
				
			||||
    def test_add_scalar_reverse(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = 0.1
 | 
				
			||||
            res = b + a
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), b + a_np))
 | 
				
			||||
 | 
				
			||||
    def test_sub_scalar(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = 0.1
 | 
				
			||||
            res = a - b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np - b))
 | 
				
			||||
 | 
				
			||||
    def test_sub_scalar_reverse(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = 0.1
 | 
				
			||||
            res = b - a
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), b - a_np))
 | 
				
			||||
 | 
				
			||||
    def test_mul_scalar(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = 0.1
 | 
				
			||||
            res = a * b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np * b))
 | 
				
			||||
 | 
				
			||||
    # div_scalar, not equal
 | 
				
			||||
    def test_div_scalar(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = 0.1
 | 
				
			||||
            res = a / b
 | 
				
			||||
            self.assertTrue(np.allclose(res.numpy(), a_np / b))
 | 
				
			||||
 | 
				
			||||
    # pow of float type, not equal
 | 
				
			||||
    def test_pow(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a**b
 | 
				
			||||
            self.assertTrue(np.allclose(res.numpy(), a_np**b_np))
 | 
				
			||||
 | 
				
			||||
    def test_floor_div(self):
 | 
				
			||||
        a_np = np.random.randint(1, 100, size=self.shape)
 | 
				
			||||
        b_np = np.random.randint(1, 100, size=self.shape)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a // b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np // b_np))
 | 
				
			||||
 | 
				
			||||
    def test_mod(self):
 | 
				
			||||
        a_np = np.random.randint(1, 100, size=self.shape)
 | 
				
			||||
        b_np = np.random.randint(1, 100, size=self.shape)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = a % b
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np % b_np))
 | 
				
			||||
 | 
				
			||||
    # for logical compare
 | 
				
			||||
    def test_equal(self):
 | 
				
			||||
        a_np = np.asarray([1, 2, 3, 4, 5])
 | 
				
			||||
        b_np = np.asarray([1, 2, 3, 4, 5])
 | 
				
			||||
        c_np = np.asarray([1, 2, 2, 4, 5])
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            c = fluid.dygraph.to_variable(c_np)
 | 
				
			||||
            res1 = (a == b)
 | 
				
			||||
            res2 = (a == c)
 | 
				
			||||
            self.assertTrue(np.array_equal(res1.numpy(), a_np == b_np))
 | 
				
			||||
            self.assertTrue(np.array_equal(res2.numpy(), a_np == c_np))
 | 
				
			||||
 | 
				
			||||
    def test_not_equal(self):
 | 
				
			||||
        a_np = np.asarray([1, 2, 3, 4, 5])
 | 
				
			||||
        b_np = np.asarray([1, 2, 3, 4, 5])
 | 
				
			||||
        c_np = np.asarray([1, 2, 2, 4, 5])
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            c = fluid.dygraph.to_variable(c_np)
 | 
				
			||||
            res1 = (a != b)
 | 
				
			||||
            res2 = (a != c)
 | 
				
			||||
            self.assertTrue(np.array_equal(res1.numpy(), a_np != b_np))
 | 
				
			||||
            self.assertTrue(np.array_equal(res2.numpy(), a_np != c_np))
 | 
				
			||||
 | 
				
			||||
    def test_less_than(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = (a < b)
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np < b_np))
 | 
				
			||||
 | 
				
			||||
    def test_less_equal(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = (a <= b)
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np <= b_np))
 | 
				
			||||
 | 
				
			||||
    def test_greater_than(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = (a > b)
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np > b_np))
 | 
				
			||||
 | 
				
			||||
    def test_greater_equal(self):
 | 
				
			||||
        a_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        b_np = np.random.random(self.shape).astype(self.dtype)
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            a = fluid.dygraph.to_variable(a_np)
 | 
				
			||||
            b = fluid.dygraph.to_variable(b_np)
 | 
				
			||||
            res = (a >= b)
 | 
				
			||||
            self.assertTrue(np.array_equal(res.numpy(), a_np >= b_np))
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == '__main__':
 | 
				
			||||
    unittest.main()
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue