Patch math method for VarBase using auto-generated op functions (#21656)
* patch math method for varbase using auto-generated op functions, test=develop * clean code that handles batch_size, test=develop * follow comments, test=develop * follow comments, test=develop * code clean, test=developpaddle_tiny_install
parent
aa287e19fe
commit
9c481e12ba
@ -0,0 +1,222 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
from .. import core
|
||||
from ..framework import Variable, convert_np_dtype_to_dtype_
|
||||
from ..layers.layer_function_generator import OpProtoHolder
|
||||
from . import to_variable, no_grad
|
||||
|
||||
_supported_int_dtype_ = [
|
||||
core.VarDesc.VarType.UINT8,
|
||||
core.VarDesc.VarType.INT8,
|
||||
core.VarDesc.VarType.INT16,
|
||||
core.VarDesc.VarType.INT32,
|
||||
core.VarDesc.VarType.INT64,
|
||||
]
|
||||
|
||||
|
||||
def monkey_patch_math_varbase():
|
||||
"""
|
||||
Similar to monkey_patch_variable.
|
||||
The difference is, in dygraph mode, use auto-generated op functions for better performance.
|
||||
"""
|
||||
|
||||
def safe_get_dtype(var):
|
||||
try:
|
||||
dtype = var.dtype
|
||||
except:
|
||||
raise ValueError("Cannot get data type from %s", var.name)
|
||||
return dtype
|
||||
|
||||
@no_grad
|
||||
def create_tensor(value, dtype, shape):
|
||||
value = float(value)
|
||||
inputs = {}
|
||||
attrs = {
|
||||
'dtype': dtype,
|
||||
'shape': shape,
|
||||
'value': value,
|
||||
'force_cpu': False
|
||||
}
|
||||
outs = core.ops.fill_constant(inputs, attrs)
|
||||
outs['Out'][0].stop_gradient = True
|
||||
return outs['Out'][0]
|
||||
|
||||
def create_scalar(value, dtype):
|
||||
return create_tensor(value, dtype, shape=[1])
|
||||
|
||||
def astype(self, dtype):
|
||||
"""
|
||||
**Notes**:
|
||||
**The variable must be a** :ref:`api_fluid_Tensor`
|
||||
|
||||
Cast a variable to a specified data type.
|
||||
|
||||
Args:
|
||||
|
||||
self(Variable): The source variable
|
||||
|
||||
dtype: The target data type
|
||||
|
||||
Returns:
|
||||
Variable: Variable with new dtype
|
||||
|
||||
Examples:
|
||||
In Static Graph Mode:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import paddle.fluid as fluid
|
||||
|
||||
startup_prog = fluid.Program()
|
||||
main_prog = fluid.Program()
|
||||
with fluid.program_guard(startup_prog, main_prog):
|
||||
original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
|
||||
new_variable = original_variable.astype('int64')
|
||||
print("new var's dtype is: {}".format(new_variable.dtype))
|
||||
|
||||
In Dygraph Mode:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
|
||||
x = np.ones([2, 2], np.float32)
|
||||
with fluid.dygraph.guard():
|
||||
original_variable = fluid.dygraph.to_variable(x)
|
||||
print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
|
||||
new_variable = original_variable.astype('int64')
|
||||
print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))
|
||||
|
||||
"""
|
||||
inputs = {'X': [self]}
|
||||
attrs = {
|
||||
"in_dtype": self.dtype,
|
||||
"out_dtype": convert_np_dtype_to_dtype_(dtype)
|
||||
}
|
||||
outs = core.ops.cast(inputs, attrs)
|
||||
return outs['Out'][0]
|
||||
|
||||
def _scalar_elementwise_op_(var, scale, bias):
|
||||
inputs = {'X': [var]}
|
||||
attrs = {"scale": scale, "bias": bias}
|
||||
outs = core.ops.scale(inputs, attrs)
|
||||
return outs['Out'][0]
|
||||
|
||||
def _scalar_elementwise_add_(var, value):
|
||||
return _scalar_elementwise_op_(var, 1.0, value)
|
||||
|
||||
def _scalar_elementwise_sub_(var, value):
|
||||
return _scalar_elementwise_op_(var, 1.0, -value)
|
||||
|
||||
def _scalar_elementwise_rsub_(var, value):
|
||||
return _scalar_elementwise_op_(var, -1.0, value)
|
||||
|
||||
def _scalar_elementwise_mul_(var, value):
|
||||
return _scalar_elementwise_op_(var, value, 0.0)
|
||||
|
||||
def _scalar_elementwise_div_(var, value):
|
||||
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
|
||||
|
||||
def _elemwise_method_creator_(method_name,
|
||||
op_type,
|
||||
reverse=False,
|
||||
scalar_method=None):
|
||||
def __impl__(self, other_var):
|
||||
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
|
||||
# which may lose accuracy. This is a hot fix for release 1.6.
|
||||
if scalar_method is not None and not (
|
||||
op_type == 'elementwise_div' and
|
||||
self.dtype in _supported_int_dtype_):
|
||||
if isinstance(other_var, float):
|
||||
if self.dtype in _supported_int_dtype_:
|
||||
assert other_var == int(other_var), \
|
||||
"float value {} cannot convert to integer".format(other_var)
|
||||
return scalar_method(self, other_var)
|
||||
elif isinstance(other_var, int):
|
||||
return scalar_method(self, float(other_var))
|
||||
|
||||
lhs_dtype = safe_get_dtype(self)
|
||||
|
||||
if not isinstance(other_var, core.VarBase):
|
||||
if reverse:
|
||||
other_var = create_tensor(
|
||||
other_var, dtype=lhs_dtype, shape=self.shape)
|
||||
else:
|
||||
# add fill_op
|
||||
other_var = create_scalar(value=other_var, dtype=lhs_dtype)
|
||||
|
||||
rhs_dtype = safe_get_dtype(other_var)
|
||||
if lhs_dtype != rhs_dtype:
|
||||
other_var = astype(other_var, lhs_dtype)
|
||||
if reverse:
|
||||
tmp = self
|
||||
self = other_var
|
||||
other_var = tmp
|
||||
|
||||
axis = -1
|
||||
op = getattr(core.ops, op_type)
|
||||
inputs = {'X': [self], 'Y': [other_var]}
|
||||
attrs = {'axis': axis}
|
||||
outs = op(inputs, attrs)
|
||||
return outs['Out'][0]
|
||||
|
||||
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
|
||||
|
||||
__impl__.__doc__ = """
|
||||
{0}
|
||||
Args:
|
||||
self(Variable): left hand variable
|
||||
other_var(Variable|float|int): right hand variable
|
||||
|
||||
Returns:
|
||||
Variable
|
||||
""".format(comment)
|
||||
__impl__.__name__ = method_name
|
||||
return __impl__
|
||||
|
||||
# inject methods
|
||||
for method_name, op_type, reverse, scalar_method in (
|
||||
("__add__", "elementwise_add", False, _scalar_elementwise_add_),
|
||||
# a+b == b+a. Do not need to reverse explicitly
|
||||
("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
|
||||
("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
|
||||
("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
|
||||
("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
|
||||
# a*b == b*a. Do not need to reverse explicitly
|
||||
("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
|
||||
("__div__", "elementwise_div", False, _scalar_elementwise_div_),
|
||||
("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
|
||||
("__rdiv__", "elementwise_div", True, None),
|
||||
("__rtruediv__", "elementwise_div", True, None),
|
||||
("__pow__", "elementwise_pow", False, None),
|
||||
("__rpow__", "elementwise_pow", True, None),
|
||||
("__floordiv__", "elementwise_floordiv", False, None),
|
||||
("__mod__", "elementwise_mod", False, None),
|
||||
# for logical compare
|
||||
("__eq__", "equal", False, None),
|
||||
("__ne__", "not_equal", False, None),
|
||||
("__lt__", "less_than", False, None),
|
||||
("__le__", "less_equal", False, None),
|
||||
("__gt__", "greater_than", False, None),
|
||||
("__ge__", "greater_equal", False, None)):
|
||||
|
||||
setattr(core.VarBase, method_name,
|
||||
_elemwise_method_creator_(method_name, op_type, reverse,
|
||||
scalar_method))
|
||||
|
||||
core.VarBase.astype = astype
|
@ -0,0 +1,206 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from decorator_helper import prog_scope
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestMathOpPatchesVarBase(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.shape = [10, 10]
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_add(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a + b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np + b_np))
|
||||
|
||||
def test_sub(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a - b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np - b_np))
|
||||
|
||||
def test_mul(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a * b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np * b_np))
|
||||
|
||||
def test_div(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a / b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np / b_np))
|
||||
|
||||
def test_add_scalar(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = 0.1
|
||||
res = a + b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np + b))
|
||||
|
||||
def test_add_scalar_reverse(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = 0.1
|
||||
res = b + a
|
||||
self.assertTrue(np.array_equal(res.numpy(), b + a_np))
|
||||
|
||||
def test_sub_scalar(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = 0.1
|
||||
res = a - b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np - b))
|
||||
|
||||
def test_sub_scalar_reverse(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = 0.1
|
||||
res = b - a
|
||||
self.assertTrue(np.array_equal(res.numpy(), b - a_np))
|
||||
|
||||
def test_mul_scalar(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = 0.1
|
||||
res = a * b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np * b))
|
||||
|
||||
# div_scalar, not equal
|
||||
def test_div_scalar(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = 0.1
|
||||
res = a / b
|
||||
self.assertTrue(np.allclose(res.numpy(), a_np / b))
|
||||
|
||||
# pow of float type, not equal
|
||||
def test_pow(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a**b
|
||||
self.assertTrue(np.allclose(res.numpy(), a_np**b_np))
|
||||
|
||||
def test_floor_div(self):
|
||||
a_np = np.random.randint(1, 100, size=self.shape)
|
||||
b_np = np.random.randint(1, 100, size=self.shape)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a // b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np // b_np))
|
||||
|
||||
def test_mod(self):
|
||||
a_np = np.random.randint(1, 100, size=self.shape)
|
||||
b_np = np.random.randint(1, 100, size=self.shape)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = a % b
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np % b_np))
|
||||
|
||||
# for logical compare
|
||||
def test_equal(self):
|
||||
a_np = np.asarray([1, 2, 3, 4, 5])
|
||||
b_np = np.asarray([1, 2, 3, 4, 5])
|
||||
c_np = np.asarray([1, 2, 2, 4, 5])
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
c = fluid.dygraph.to_variable(c_np)
|
||||
res1 = (a == b)
|
||||
res2 = (a == c)
|
||||
self.assertTrue(np.array_equal(res1.numpy(), a_np == b_np))
|
||||
self.assertTrue(np.array_equal(res2.numpy(), a_np == c_np))
|
||||
|
||||
def test_not_equal(self):
|
||||
a_np = np.asarray([1, 2, 3, 4, 5])
|
||||
b_np = np.asarray([1, 2, 3, 4, 5])
|
||||
c_np = np.asarray([1, 2, 2, 4, 5])
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
c = fluid.dygraph.to_variable(c_np)
|
||||
res1 = (a != b)
|
||||
res2 = (a != c)
|
||||
self.assertTrue(np.array_equal(res1.numpy(), a_np != b_np))
|
||||
self.assertTrue(np.array_equal(res2.numpy(), a_np != c_np))
|
||||
|
||||
def test_less_than(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = (a < b)
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np < b_np))
|
||||
|
||||
def test_less_equal(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = (a <= b)
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np <= b_np))
|
||||
|
||||
def test_greater_than(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = (a > b)
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np > b_np))
|
||||
|
||||
def test_greater_equal(self):
|
||||
a_np = np.random.random(self.shape).astype(self.dtype)
|
||||
b_np = np.random.random(self.shape).astype(self.dtype)
|
||||
with fluid.dygraph.guard():
|
||||
a = fluid.dygraph.to_variable(a_np)
|
||||
b = fluid.dygraph.to_variable(b_np)
|
||||
res = (a >= b)
|
||||
self.assertTrue(np.array_equal(res.numpy(), a_np >= b_np))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue