add IfElse test case for ir memory optimize (#15998)
* add ir memory optimize test case for IfElse op, test=develop * fix some unitttest failure by force using the python memory_optimize, test=develop * tweak comments, test=develop * fix unittest, test=develop * fix unittest, test=developrevert-16045-imperative_remove_desc
parent
503efa8b86
commit
9cc6f4009f
@ -0,0 +1,123 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# nlp model stack of op operate on lod. It's a classical test case in optimize pass.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.layers as layers
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
|
||||||
|
from paddle.fluid import compiler, Program, program_guard
|
||||||
|
from paddle.fluid.executor import Executor
|
||||||
|
from paddle.fluid.backward import append_backward
|
||||||
|
from paddle.fluid.optimizer import MomentumOptimizer
|
||||||
|
from ir_memory_optimize_net_base import TestIrMemOptBase
|
||||||
|
|
||||||
|
|
||||||
|
class TestIrMemoryOptimizeIfElseOp(unittest.TestCase):
|
||||||
|
def check_network_convergence(self, use_cuda=True, py_opt=False,
|
||||||
|
iter_num=5):
|
||||||
|
prog = Program()
|
||||||
|
startup_prog = Program()
|
||||||
|
prog.random_seed = 100
|
||||||
|
startup_prog.random_seed = 100
|
||||||
|
with program_guard(prog, startup_prog):
|
||||||
|
image = layers.data(name='x', shape=[784], dtype='float32')
|
||||||
|
|
||||||
|
label = layers.data(name='y', shape=[1], dtype='int64')
|
||||||
|
|
||||||
|
limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
|
||||||
|
cond = layers.less_than(x=label, y=limit)
|
||||||
|
ie = layers.IfElse(cond)
|
||||||
|
|
||||||
|
with ie.true_block():
|
||||||
|
true_image = ie.input(image)
|
||||||
|
hidden = layers.fc(input=true_image, size=100, act='tanh')
|
||||||
|
prob = layers.fc(input=hidden, size=10, act='softmax')
|
||||||
|
ie.output(prob)
|
||||||
|
|
||||||
|
with ie.false_block():
|
||||||
|
false_image = ie.input(image)
|
||||||
|
hidden = layers.fc(input=false_image, size=200, act='tanh')
|
||||||
|
prob = layers.fc(input=hidden, size=10, act='softmax')
|
||||||
|
ie.output(prob)
|
||||||
|
|
||||||
|
prob = ie()
|
||||||
|
loss = layers.cross_entropy(input=prob[0], label=label)
|
||||||
|
avg_loss = layers.mean(loss)
|
||||||
|
|
||||||
|
optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
|
||||||
|
optimizer.minimize(avg_loss, startup_prog)
|
||||||
|
train_reader = paddle.batch(
|
||||||
|
paddle.dataset.mnist.train(), batch_size=200)
|
||||||
|
|
||||||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||||
|
exe = Executor(place)
|
||||||
|
|
||||||
|
exec_strategy = fluid.ExecutionStrategy()
|
||||||
|
exec_strategy.use_cuda = use_cuda
|
||||||
|
|
||||||
|
if py_opt:
|
||||||
|
fluid.memory_optimize(fluid.default_main_program())
|
||||||
|
train_cp = compiler.CompiledProgram(fluid.default_main_program())
|
||||||
|
train_cp = train_cp.with_data_parallel(
|
||||||
|
loss_name=avg_loss.name, exec_strategy=exec_strategy)
|
||||||
|
fetch_list = [avg_loss.name]
|
||||||
|
|
||||||
|
exe.run(startup_prog)
|
||||||
|
PASS_NUM = 100
|
||||||
|
loop = 0
|
||||||
|
ret = []
|
||||||
|
for pass_id in range(PASS_NUM):
|
||||||
|
for data in train_reader():
|
||||||
|
x_data = np.array([x[0] for x in data]).astype("float32")
|
||||||
|
y_data = np.array([x[1] for x in data]).astype("int64")
|
||||||
|
y_data = y_data.reshape((y_data.shape[0], 1))
|
||||||
|
|
||||||
|
outs = exe.run(train_cp,
|
||||||
|
feed={'x': x_data,
|
||||||
|
'y': y_data},
|
||||||
|
fetch_list=[avg_loss])
|
||||||
|
|
||||||
|
loop += 1
|
||||||
|
ret.append(outs[0])
|
||||||
|
if iter_num == loop:
|
||||||
|
return ret
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def test_ifelse(self):
|
||||||
|
ret1 = self.check_network_convergence(False, True)
|
||||||
|
print(ret1)
|
||||||
|
ret2 = self.check_network_convergence(False, False)
|
||||||
|
print(ret2)
|
||||||
|
self.assertTrue(np.allclose(ret1, ret2))
|
||||||
|
|
||||||
|
if fluid.core.is_compiled_with_cuda():
|
||||||
|
ret1 = self.check_network_convergence(True, True)
|
||||||
|
print(ret1)
|
||||||
|
ret2 = self.check_network_convergence(True, False)
|
||||||
|
print(ret2)
|
||||||
|
self.assertTrue(np.allclose(ret1, ret2))
|
||||||
|
#self.assertEqual(ret1, ret2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue