Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into refine_code
commit
9d7279b953
@ -1,39 +0,0 @@
|
|||||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from . import core
|
|
||||||
|
|
||||||
__all__ = ['Params', ]
|
|
||||||
|
|
||||||
|
|
||||||
class Params(object):
|
|
||||||
def __init__(self, path=None):
|
|
||||||
self.scope = core.Scope()
|
|
||||||
|
|
||||||
if path:
|
|
||||||
self._load(path)
|
|
||||||
|
|
||||||
def _load(self, path):
|
|
||||||
# reference: load_persistables in io.py
|
|
||||||
pass
|
|
||||||
|
|
||||||
def save(self, path):
|
|
||||||
# reference: save_persistables in io.py
|
|
||||||
pass
|
|
||||||
|
|
||||||
def add_params(self, scope):
|
|
||||||
# take the keys from the scope,
|
|
||||||
# if not already exists in self.scope,
|
|
||||||
# add the key and value into self.scope.
|
|
||||||
pass
|
|
@ -0,0 +1,140 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
CLASS_DIM = 2
|
||||||
|
EMB_DIM = 128
|
||||||
|
HID_DIM = 512
|
||||||
|
STACKED_NUM = 3
|
||||||
|
|
||||||
|
|
||||||
|
def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
|
||||||
|
assert stacked_num % 2 == 1
|
||||||
|
|
||||||
|
emb = fluid.layers.embedding(
|
||||||
|
input=data, size=[input_dim, emb_dim], is_sparse=True)
|
||||||
|
|
||||||
|
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
|
||||||
|
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
|
||||||
|
|
||||||
|
inputs = [fc1, lstm1]
|
||||||
|
|
||||||
|
for i in range(2, stacked_num + 1):
|
||||||
|
fc = fluid.layers.fc(input=inputs, size=hid_dim)
|
||||||
|
lstm, cell = fluid.layers.dynamic_lstm(
|
||||||
|
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
|
||||||
|
inputs = [fc, lstm]
|
||||||
|
|
||||||
|
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
|
||||||
|
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
|
||||||
|
|
||||||
|
prediction = fluid.layers.fc(input=[fc_last, lstm_last],
|
||||||
|
size=class_dim,
|
||||||
|
act='softmax')
|
||||||
|
return prediction
|
||||||
|
|
||||||
|
|
||||||
|
def inference_network(word_dict):
|
||||||
|
data = fluid.layers.data(
|
||||||
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||||
|
|
||||||
|
dict_dim = len(word_dict)
|
||||||
|
net = stacked_lstm_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM,
|
||||||
|
STACKED_NUM)
|
||||||
|
return net
|
||||||
|
|
||||||
|
|
||||||
|
def train_network(word_dict):
|
||||||
|
prediction = inference_network(word_dict)
|
||||||
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||||
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
avg_cost = fluid.layers.mean(cost)
|
||||||
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
||||||
|
return avg_cost, accuracy
|
||||||
|
|
||||||
|
|
||||||
|
def train(use_cuda, save_path):
|
||||||
|
BATCH_SIZE = 128
|
||||||
|
EPOCH_NUM = 5
|
||||||
|
|
||||||
|
word_dict = paddle.dataset.imdb.word_dict()
|
||||||
|
|
||||||
|
train_data = paddle.batch(
|
||||||
|
paddle.reader.shuffle(
|
||||||
|
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
||||||
|
batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
|
test_data = paddle.batch(
|
||||||
|
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
|
def event_handler(event):
|
||||||
|
if isinstance(event, fluid.EndIteration):
|
||||||
|
if (event.batch_id % 10) == 0:
|
||||||
|
avg_cost, accuracy = trainer.test(reader=test_data)
|
||||||
|
|
||||||
|
print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format(
|
||||||
|
event.batch_id + 1, avg_cost, accuracy))
|
||||||
|
|
||||||
|
if accuracy > 0.01: # Low threshold for speeding up CI
|
||||||
|
trainer.params.save(save_path)
|
||||||
|
return
|
||||||
|
|
||||||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||||
|
trainer = fluid.Trainer(
|
||||||
|
partial(train_network, word_dict),
|
||||||
|
optimizer=fluid.optimizer.Adagrad(learning_rate=0.002),
|
||||||
|
place=place,
|
||||||
|
event_handler=event_handler)
|
||||||
|
|
||||||
|
trainer.train(train_data, EPOCH_NUM, event_handler=event_handler)
|
||||||
|
|
||||||
|
|
||||||
|
def infer(use_cuda, save_path):
|
||||||
|
params = fluid.Params(save_path)
|
||||||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||||
|
word_dict = paddle.dataset.imdb.word_dict()
|
||||||
|
inferencer = fluid.Inferencer(
|
||||||
|
partial(inference_network, word_dict), params, place=place)
|
||||||
|
|
||||||
|
def create_random_lodtensor(lod, place, low, high):
|
||||||
|
data = np.random.random_integers(low, high,
|
||||||
|
[lod[-1], 1]).astype("int64")
|
||||||
|
res = fluid.LoDTensor()
|
||||||
|
res.set(data, place)
|
||||||
|
res.set_lod([lod])
|
||||||
|
return res
|
||||||
|
|
||||||
|
lod = [0, 4, 10]
|
||||||
|
tensor_words = create_random_lodtensor(
|
||||||
|
lod, place, low=0, high=len(word_dict) - 1)
|
||||||
|
results = inferencer.infer({'words': tensor_words})
|
||||||
|
print("infer results: ", results)
|
||||||
|
|
||||||
|
|
||||||
|
def main(use_cuda):
|
||||||
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
||||||
|
return
|
||||||
|
save_path = "understand_sentiment_stacked_lstm.inference.model"
|
||||||
|
train(use_cuda, save_path)
|
||||||
|
infer(use_cuda, save_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
for use_cuda in (False, True):
|
||||||
|
main(use_cuda=use_cuda)
|
Loading…
Reference in new issue