Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into imperative_mnist

test=develop
revert-15207-remove_op_handle_lock_and_fix_var
minqiyang 7 years ago
commit 9e3155e01d

@ -94,52 +94,52 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# specify sphinx version as 1.5.6 and remove -U option for [pip install -U # specify sphinx version as 1.5.6 and remove -U option for [pip install -U
# sphinx-rtd-theme] since -U option will cause sphinx being updated to newest # sphinx-rtd-theme] since -U option will cause sphinx being updated to newest
# version(1.7.1 for now), which causes building documentation failed. # version(1.7.1 for now), which causes building documentation failed.
RUN pip3 install -U wheel && \ RUN pip3 --no-cache-dir install -U wheel && \
pip3 install -U docopt PyYAML sphinx==1.5.6 && \ pip3 --no-cache-dir install -U docopt PyYAML sphinx==1.5.6 && \
pip3 install sphinx-rtd-theme==0.1.9 recommonmark && \ pip3 --no-cache-dir install sphinx-rtd-theme==0.1.9 recommonmark && \
pip3.6 install -U wheel && \ pip3.6 --no-cache-dir install -U wheel && \
pip3.6 install -U docopt PyYAML sphinx==1.5.6 && \ pip3.6 --no-cache-dir install -U docopt PyYAML sphinx==1.5.6 && \
pip3.6 install sphinx-rtd-theme==0.1.9 recommonmark && \ pip3.6 --no-cache-dir install sphinx-rtd-theme==0.1.9 recommonmark && \
pip3.7 install -U wheel && \ pip3.7 --no-cache-dir install -U wheel && \
pip3.7 install -U docopt PyYAML sphinx==1.5.6 && \ pip3.7 --no-cache-dir install -U docopt PyYAML sphinx==1.5.6 && \
pip3.7 install sphinx-rtd-theme==0.1.9 recommonmark && \ pip3.7 --no-cache-dir install sphinx-rtd-theme==0.1.9 recommonmark && \
easy_install -U pip && \ easy_install -U pip && \
pip install -U pip setuptools wheel && \ pip --no-cache-dir install -U pip setuptools wheel && \
pip install -U docopt PyYAML sphinx==1.5.6 && \ pip --no-cache-dir install -U docopt PyYAML sphinx==1.5.6 && \
pip install sphinx-rtd-theme==0.1.9 recommonmark pip --no-cache-dir install sphinx-rtd-theme==0.1.9 recommonmark
RUN pip3 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \ RUN pip3 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip3 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3 install opencv-python && \ pip3 --no-cache-dir install opencv-python && \
pip3.6 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \ pip3.6 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.6 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip3.6 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.6 install opencv-python && \ pip3.6 --no-cache-dir install opencv-python && \
pip3.7 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \ pip3.7 --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.7 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip3.7 --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.7 install opencv-python && \ pip3.7 --no-cache-dir install opencv-python && \
pip install 'pre-commit==1.10.4' 'ipython==5.3.0' && \ pip --no-cache-dir install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip --no-cache-dir install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install opencv-python pip --no-cache-dir install opencv-python
#For docstring checker #For docstring checker
RUN pip3 install pylint pytest astroid isort RUN pip3 --no-cache-dir install pylint pytest astroid isort
RUN pip3.6 install pylint pytest astroid isort RUN pip3.6 --no-cache-dir install pylint pytest astroid isort
RUN pip3.7 install pylint pytest astroid isort RUN pip3.7 --no-cache-dir install pylint pytest astroid isort
RUN pip install pylint pytest astroid isort LinkChecker RUN pip --no-cache-dir install pylint pytest astroid isort LinkChecker
COPY ./python/requirements.txt /root/ COPY ./python/requirements.txt /root/
RUN pip3 install -r /root/requirements.txt RUN pip3 --no-cache-dir install -r /root/requirements.txt
RUN pip3.6 install -r /root/requirements.txt RUN pip3.6 --no-cache-dir install -r /root/requirements.txt
RUN pip3.7 install -r /root/requirements.txt RUN pip3.7 --no-cache-dir install -r /root/requirements.txt
RUN pip install -r /root/requirements.txt RUN pip --no-cache-dir install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use # To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2 # the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev RUN apt-get install -y libssl-dev libffi-dev && apt-get clean -y
RUN pip3 install certifi urllib3[secure] RUN pip3 --no-cache-dir install certifi urllib3[secure]
RUN pip3.6 install certifi urllib3[secure] RUN pip3.6 --no-cache-dir install certifi urllib3[secure]
RUN pip3.7 install certifi urllib3[secure] RUN pip3.7 --no-cache-dir install certifi urllib3[secure]
RUN pip install certifi urllib3[secure] RUN pip --no-cache-dir install certifi urllib3[secure]
# Install woboq_codebrowser to /woboq # Install woboq_codebrowser to /woboq

@ -106,10 +106,10 @@ else(WIN32)
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0) SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0)
ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB} ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB}
COMMAND ${CMAKE_COMMAND} -E copy ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB} COMMAND ${CMAKE_COMMAND} -E copy ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB}
DEPENDS mkldnn) DEPENDS mkldnn shared_mkldnn)
endif(WIN32) endif(WIN32)
ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB}) ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB})
ADD_DEPENDENCIES(mkldnn_shared_lib ${MKLDNN_PROJECT} mkldnn)
IF(WITH_C_API) IF(WITH_C_API)
INSTALL(FILES ${MKLDNN_SHARED_LIB} DESTINATION lib) INSTALL(FILES ${MKLDNN_SHARED_LIB} DESTINATION lib)
ENDIF() ENDIF()

@ -136,7 +136,7 @@ if (WITH_MKLDNN)
copy(mkldnn_lib copy(mkldnn_lib
SRCS ${MKLDNN_INC_DIR} ${MKLDNN_SHARED_LIB} SRCS ${MKLDNN_INC_DIR} ${MKLDNN_SHARED_LIB}
DSTS ${dst_dir} ${dst_dir}/lib DSTS ${dst_dir} ${dst_dir}/lib
DEPS mkldnn DEPS mkldnn_shared_lib
) )
endif () endif ()

@ -68,18 +68,23 @@ cc_library(garbage_collector SRCS garbage_collector.cc DEPS device_context memor
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim) cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
cc_test(reader_test SRCS reader_test.cc DEPS reader) cc_test(reader_test SRCS reader_test.cc DEPS reader)
cc_test(variable_test SRCS variable_test.cc)
cc_library(threadpool SRCS threadpool.cc DEPS enforce) cc_library(threadpool SRCS threadpool.cc DEPS enforce)
cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool) cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
cc_library(scope SRCS scope.cc DEPS glog threadpool) cc_library(var_type_traits SRCS var_type_traits DEPS lod_tensor selected_rows framework_proto)
if (WITH_GPU)
target_link_libraries(var_type_traits dynload_cuda)
endif()
cc_test(var_type_traits_test SRCS var_type_traits_test.cc DEPS var_type_traits)
cc_library(scope SRCS scope.cc DEPS glog threadpool var_type_traits)
cc_library(scope_pool SRCS scope_pool.cc DEPS scope) cc_library(scope_pool SRCS scope_pool.cc DEPS scope)
cc_test(scope_test SRCS scope_test.cc DEPS scope) cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_test(variable_test SRCS variable_test.cc DEPS tensor var_type_traits)
cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor) cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor)
nv_test(data_device_transform_test SRCS data_device_transform_test.cu nv_test(data_device_transform_test SRCS data_device_transform_test.cu
DEPS operator op_registry device_context math_function) DEPS operator op_registry device_context math_function scope)
if(WITH_GPU) if(WITH_GPU)
if (WIN32) if (WIN32)

@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"

@ -88,7 +88,7 @@ void EagerDeletionOpHandle::RunImpl() {
} }
} else { } else {
PADDLE_THROW("Type %s of %s is not supported eager deletion", PADDLE_THROW("Type %s of %s is not supported eager deletion",
var->Type().name(), name); framework::ToTypeName(var->Type()), name);
} }
} }

File diff suppressed because it is too large Load Diff

@ -45,7 +45,7 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
#endif #endif
int GetVarDeviceID( int GetVarDeviceID(
const ir::Graph &graph, const std::string &varname, const std::string &varname,
const std::unordered_map<std::string, int> &sharded_var_device) const; const std::unordered_map<std::string, int> &sharded_var_device) const;
bool IsScaleLossOp(ir::Node *node) const; bool IsScaleLossOp(ir::Node *node) const;
@ -57,12 +57,6 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
ir::Graph *result, ir::Node *node, ir::Graph *result, ir::Node *node,
std::unordered_map<std::string, int> *sharded_var_device) const; std::unordered_map<std::string, int> *sharded_var_device) const;
std::vector<std::string> FindDistTrainSendVars(
const std::vector<ir::Node *> &nodes) const;
std::vector<std::string> FindDistTrainRecvVars(
const std::vector<ir::Node *> &nodes) const;
void CreateComputationalOps(ir::Graph *result, ir::Node *node, void CreateComputationalOps(ir::Graph *result, ir::Node *node,
size_t num_places) const; size_t num_places) const;
@ -77,7 +71,7 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
int dev_id) const; int dev_id) const;
int GetOpDeviceID( int GetOpDeviceID(
const ir::Graph &graph, ir::Node *node, ir::Node *node,
const std::unordered_map<std::string, int> &sharded_var_device) const; const std::unordered_map<std::string, int> &sharded_var_device) const;
void InsertAllReduceOp(ir::Graph *result, const std::string &og) const; void InsertAllReduceOp(ir::Graph *result, const std::string &og) const;
@ -100,6 +94,15 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
void SetCommunicationContext(OpHandleBase *op_handle, void SetCommunicationContext(OpHandleBase *op_handle,
const platform::Place &p) const; const platform::Place &p) const;
std::vector<ir::Node *> SortForReduceMode(
const std::vector<ir::Node *> &) const;
int GetOpDeviceID(
ir::Node *node,
const std::unordered_map<std::string, int> &shared_var_device,
std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops)
const;
mutable std::string loss_var_name_; mutable std::string loss_var_name_;
mutable std::vector<platform::Place> places_; mutable std::vector<platform::Place> places_;
mutable std::vector<Scope *> local_scopes_; mutable std::vector<Scope *> local_scopes_;

@ -24,7 +24,7 @@ static void VisitVariable(Variable* var, Func* func) {
} else if (var->IsType<SelectedRows>()) { } else if (var->IsType<SelectedRows>()) {
(*func)(var->GetMutable<SelectedRows>()); (*func)(var->GetMutable<SelectedRows>());
} else { } else {
PADDLE_THROW("Not supported type %s", var->Type().name()); PADDLE_THROW("Not supported type %s", ToTypeName(var->Type()));
} }
} }
@ -35,7 +35,7 @@ static void VisitVariable(const Variable& var, Func* func) {
} else if (var.IsType<SelectedRows>()) { } else if (var.IsType<SelectedRows>()) {
(*func)(var.Get<SelectedRows>()); (*func)(var.Get<SelectedRows>());
} else { } else {
PADDLE_THROW("Not supported type %s", var.Type().name()); PADDLE_THROW("Not supported type %s", ToTypeName(var.Type()));
} }
} }

@ -119,7 +119,7 @@ static void DeleteUnusedTensors(
} }
} else { } else {
PADDLE_THROW("Type %s of %s is not supported eager deletion", PADDLE_THROW("Type %s of %s is not supported eager deletion",
var->Type().name(), name); framework::ToTypeName(var->Type()), name);
} }
} }
} }

@ -45,6 +45,7 @@ pass_library(is_test_pass base)
pass_library(conv_elementwise_add_act_fuse_pass inference) pass_library(conv_elementwise_add_act_fuse_pass inference)
pass_library(conv_elementwise_add2_act_fuse_pass inference) pass_library(conv_elementwise_add2_act_fuse_pass inference)
pass_library(conv_elementwise_add_fuse_pass inference) pass_library(conv_elementwise_add_fuse_pass inference)
pass_library(conv_affine_channel_fuse_pass inference)
if(WITH_MKLDNN) if(WITH_MKLDNN)
pass_library(mkldnn_placement_pass base) pass_library(mkldnn_placement_pass base)
pass_library(depthwise_conv_mkldnn_pass base) pass_library(depthwise_conv_mkldnn_pass base)

@ -0,0 +1,222 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_affine_channel_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace ir {
#define GET_CONV_BN_NODES(pattern_name) \
/* OPERATORS */ \
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(affine_channel, affine_channel, pattern_name); \
/* CONV inputs */ \
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \
/* CONV outputs */ \
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \
/* Affine Channel inputs */ \
GET_IR_NODE_FROM_SUBGRAPH(ac_scale, ac_scale, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(ac_bias, ac_bias, pattern_name); \
/* Affine channel outputs */ \
GET_IR_NODE_FROM_SUBGRAPH(ac_out, ac_out, pattern_name); /* Out */
void recompute_bias_and_weights(const Scope* scope, ir::Node* conv_weight,
const ir::Node& ac_scale,
const LoDTensor& ac_bias_tensor,
LoDTensor* eltwise_y_in_tensor) {
using EigenVectorArrayMap =
Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
using ConstEigenVectorArrayMap =
Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
using EigenMatrixArrayMap = Eigen::Map<
Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
// Re-compute bias of conv2d from AffineChannel
PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), ac_bias_tensor.dims());
auto* scale_tensor = scope->FindVar(ac_scale.Name())->GetMutable<LoDTensor>();
ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
scale_tensor->numel(), 1);
ConstEigenVectorArrayMap ac_bias_array(ac_bias_tensor.data<float>(),
ac_bias_tensor.numel(), 1);
EigenVectorArrayMap eltwise_y_in_array(
eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
eltwise_y_in_tensor->numel(), 1);
eltwise_y_in_array = (eltwise_y_in_array * scale_array) + ac_bias_array;
// Re-compute weight of conv2d from AffineChannel
auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
auto weights_shape = weights->dims();
auto weights_shape_2d = flatten_to_2d(weights_shape, 1);
EigenMatrixArrayMap weights_array_2d(
weights->mutable_data<float>(platform::CPUPlace()), weights_shape_2d[0],
weights_shape_2d[1]);
weights_array_2d.colwise() *= scale_array;
}
std::unique_ptr<ir::Graph> ConvAffineChannelFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init(name_scope_, graph.get());
auto* scope = param_scope();
PADDLE_ENFORCE(scope);
GraphPatternDetector gpd;
auto* conv_input =
gpd.mutable_pattern()
->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
->AsInput()
->assert_is_op_input("conv2d", "Input");
patterns::ConvAffineChannel conv_ac_pattern(gpd.mutable_pattern(),
name_scope_);
conv_ac_pattern(conv_input, false /*with_eltwise_add*/);
int found_conv_ac_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle ConvAffineChannel fuse";
GET_CONV_BN_NODES(conv_ac_pattern);
// check if fuse can be done and if MKL-DNN should be used
FuseOptions fuse_option = FindFuseOption(*conv, *affine_channel);
if (fuse_option == DO_NOT_FUSE) {
VLOG(3) << "do not perform conv+affinechannel fuse";
return;
}
// Create eltwise_y (conv bias) variable
VarDesc eltwise_y_in_desc(
patterns::PDNodeName(name_scope_, "eltwise_y_in"));
eltwise_y_in_desc.SetPersistable(true);
auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
auto* eltwise_y_in_tensor =
scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();
// Get affine_channel bias
auto* ac_bias_tensor =
scope->FindVar(ac_bias->Name())->GetMutable<LoDTensor>();
// Initialize eltwise_y
eltwise_y_in_tensor->Resize(ac_bias_tensor->dims());
std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
eltwise_y_in_tensor->numel(), 0.0f);
// update weights and biases
recompute_bias_and_weights(scope, conv_weight, *ac_scale, *ac_bias_tensor,
eltwise_y_in_tensor);
// create an elementwise add node.
OpDesc desc;
desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
desc.SetOutput("Out", std::vector<std::string>({ac_out->Name()}));
desc.SetType("elementwise_add");
desc.SetAttr("axis", 1);
auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied.
GraphSafeRemoveNodes(graph.get(), {ac_scale, ac_bias, affine_channel});
IR_NODE_LINK_TO(conv_out, eltwise_op);
IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
IR_NODE_LINK_TO(eltwise_op, ac_out);
found_conv_ac_count++;
};
gpd(graph.get(), handler);
AddStatis(found_conv_ac_count);
return graph;
}
std::unique_ptr<ir::Graph> ConvEltwiseAddAffineChannelFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init(name_scope_, graph.get());
auto* scope = param_scope();
PADDLE_ENFORCE(scope);
GraphPatternDetector gpd;
auto* conv_input =
gpd.mutable_pattern()
->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
->AsInput()
->assert_is_op_input("conv2d", "Input");
patterns::ConvAffineChannel conv_ac_pattern(gpd.mutable_pattern(),
name_scope_);
conv_ac_pattern(conv_input, true /*with_eltwise_add*/);
int found_conv_ac_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle ConvBN fuse";
GET_CONV_BN_NODES(conv_ac_pattern);
// OPERATORS
GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_ac_pattern);
// BIAS inputs
GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_ac_pattern);
// BIAS outputs
GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_ac_pattern);
// Get eltwise_y (conv bias) variable
auto* eltwise_y_in_tensor =
scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();
// Get batch norm bias
auto* ac_bias_tensor =
scope->FindVar(ac_bias->Name())->GetMutable<LoDTensor>();
recompute_bias_and_weights(scope, conv_weight, *ac_scale, *ac_bias_tensor,
eltwise_y_in_tensor);
// Update the elementwise_add node
eltwise->Op()->SetAttr("axis", 1);
eltwise->Op()->SetOutput("Out", std::vector<std::string>({ac_out->Name()}));
GraphSafeRemoveNodes(graph.get(),
{ac_scale, ac_bias, affine_channel, eltwise_out});
IR_NODE_LINK_TO(eltwise, ac_out);
found_conv_ac_count++;
};
gpd(graph.get(), handler);
AddStatis(found_conv_ac_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(conv_affine_channel_fuse_pass,
paddle::framework::ir::ConvAffineChannelFusePass);
REGISTER_PASS(conv_eltwiseadd_affine_channel_fuse_pass,
paddle::framework::ir::ConvEltwiseAddAffineChannelFusePass);

@ -0,0 +1,49 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
/*
* Fuse the Conv and ConvAffineChannel.
*/
class ConvAffineChannelFusePass : public FusePassBase {
public:
virtual ~ConvAffineChannelFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"conv_affine_channel_fuse"};
};
class ConvEltwiseAddAffineChannelFusePass : public FusePassBase {
public:
virtual ~ConvEltwiseAddAffineChannelFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"conv_eltwiseadd_affine_channel_fuse"};
};
} // namespace ir
} // namespace framework
} // namespace paddle

@ -23,66 +23,8 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
namespace {
void CheckProgram(const ProgramDesc &program) {
#define _INT(role) static_cast<int>(role)
std::map<int, bool> visit;
for (OpDesc *op : program.Block(0).AllOps()) {
// For backward compatibility, some program doesn't have role added.
if (!op->HasAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) continue;
int role_id =
boost::get<int>(op->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName()));
visit[role_id] = true;
switch (role_id) {
case _INT(OpRole::kForward):
if (visit.find(_INT(OpRole::kBackward)) != visit.end()) {
LOG(ERROR) << "Cannot add backward operator before forward operator "
<< op->Type();
}
break;
case _INT(OpRole::kBackward):
case _INT(OpRole::kBackward) | _INT(OpRole::kLoss):
PADDLE_ENFORCE(
visit.find(_INT(OpRole::kOptimize)) == visit.end(),
"Cannot add backward operator %s after optimize operator.",
op->Type());
break;
case _INT(OpRole::kForward) | _INT(OpRole::kLoss):
PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward) |
_INT(OpRole::kLoss)) == visit.end(),
"Cannot add backward|loss operator before "
"forward|loss operator %s.",
op->Type());
PADDLE_ENFORCE(
visit.find(_INT(OpRole::kOptimize)) == visit.end(),
"Cannot add forward|loss operator %s after optimize operator.",
op->Type());
break;
case _INT(OpRole::kOptimize):
case _INT(OpRole::kOptimize) | _INT(OpRole::kLRSched):
PADDLE_ENFORCE(visit.find(_INT(OpRole::kBackward)) != visit.end(),
"Optimize operators %s must follow backward operator.",
op->Type());
break;
case _INT(OpRole::kLRSched):
case _INT(OpRole::kDist):
case _INT(OpRole::kRPC):
case _INT(OpRole::kNotSpecified):
break;
default:
LOG(FATAL) << "Unknown operator role. Don't add new role because "
"you don't know what you are doing.";
}
}
#undef _INT
}
} // namespace
Graph::Graph(const ProgramDesc &program) : program_(program) { Graph::Graph(const ProgramDesc &program) : program_(program) {
CheckProgram(program_);
auto var_nodes = InitFromProgram(program_); auto var_nodes = InitFromProgram(program_);
ResolveHazard(var_nodes); ResolveHazard(var_nodes);
} }

@ -1234,6 +1234,78 @@ PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
return elementwise_add_out; return elementwise_add_out;
} }
PDNode *patterns::ConvAffineChannel::operator()(
paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) {
// Create Operators
conv_input->assert_is_op_input("conv2d", "Input");
auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
PDNode *eltwise_op = nullptr;
if (with_eltwise_add) {
eltwise_op =
pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
}
auto *affine_channel_op =
pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
// Create variables
// Conv Filter
auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Filter");
auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("conv2d");
PDNode *eltwise_y_in_var = nullptr;
PDNode *eltwise_out_var = nullptr;
if (with_eltwise_add) {
// Conv output as Bias input
conv_out_var->assert_is_op_input("elementwise_add", "X");
// Bias
eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
eltwise_out_var = pattern->NewNode(eltwise_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("elementwise_add");
} else {
// Conv output as AffineChannel input
conv_out_var->assert_is_op_input("affine_channel", "X");
}
// AC Scale
auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("affine_channel", "Scale");
// AC Bias
auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("affine_channel", "Bias");
// AC output
auto *ac_out_var = pattern->NewNode(ac_out_repr())
->AsOutput()
->assert_is_op_output("affine_channel");
conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
if (with_eltwise_add) {
eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
.LinksTo({eltwise_out_var});
affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
.LinksTo({ac_out_var});
} else {
affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
.LinksTo({ac_out_var});
}
return ac_out_var;
}
} // namespace ir } // namespace ir
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle

@ -734,6 +734,38 @@ struct ConvElementwiseadd : public PatternBase {
PATTERN_DECL_NODE(elementwise_add_out); PATTERN_DECL_NODE(elementwise_add_out);
}; };
// Conv with affine_channel
// op: conv + (elementwise_add +) affine_channel
// named nodes:
// conv_weight, conv_out, conv,
// ac_x, ac_scale, ac_bias
// affine_channel, ac_out
struct ConvAffineChannel : public PatternBase {
ConvAffineChannel(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "conv_affine_channel") {}
PDNode* operator()(PDNode* conv_input, bool with_eltwise_add);
// declare operator node's name
PATTERN_DECL_NODE(conv);
PATTERN_DECL_NODE(affine_channel);
PATTERN_DECL_NODE(eltwise); // ELEMENTWISE_ADD
// CONV inputs
PATTERN_DECL_NODE(conv_weight); // Filter
// CONV outputs
PATTERN_DECL_NODE(conv_out); // tmp
// ELTWISE inputs
PATTERN_DECL_NODE(eltwise_y_in);
// ELTWISE outputs
PATTERN_DECL_NODE(eltwise_out); // tmp
// AC(Affine_Channel) inputs
PATTERN_DECL_NODE(ac_scale);
PATTERN_DECL_NODE(ac_bias);
// AC outputs
PATTERN_DECL_NODE(ac_out); // Out
};
} // namespace patterns } // namespace patterns
// Link two ir::Nodes from each other. // Link two ir::Nodes from each other.

@ -75,6 +75,7 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
std::vector<Node*> optimize_ops; std::vector<Node*> optimize_ops;
std::vector<Node*> lr_ops; // ops other than forward/backward/optimize std::vector<Node*> lr_ops; // ops other than forward/backward/optimize
std::unordered_set<std::string> grad_names; std::unordered_set<std::string> grad_names;
std::unordered_map<std::string, std::string> gradname2paramname;
std::vector<ir::Node*> nodes = TopologySortOperations(*graph); std::vector<ir::Node*> nodes = TopologySortOperations(*graph);
auto origin_nodes = graph->ReleaseNodes(); auto origin_nodes = graph->ReleaseNodes();
@ -99,6 +100,7 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
auto op_role_vars = boost::get<std::vector<std::string>>(op_role_var); auto op_role_vars = boost::get<std::vector<std::string>>(op_role_var);
for (size_t i = 0; i < op_role_vars.size(); i += 2) { for (size_t i = 0; i < op_role_vars.size(); i += 2) {
grad_names.insert(op_role_vars[i + 1]); grad_names.insert(op_role_vars[i + 1]);
gradname2paramname[op_role_vars[i + 1]] = op_role_vars[i];
} }
} else if (op_role & static_cast<int>(framework::OpRole::kLRSched)) { } else if (op_role & static_cast<int>(framework::OpRole::kLRSched)) {
lr_ops.push_back(node); lr_ops.push_back(node);
@ -109,7 +111,7 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
// 2. copy forward backward // 2. copy forward backward
ir::Node* prev_repeat_last_op_node = nullptr; ir::Node* prev_repeat_last_op_node = nullptr;
// record origin_grad -> repeated grad list map. // record origin_grad -> repeated_grad_list map.
std::map<ir::Node*, std::vector<ir::Node*>> grad_repeated_map; std::map<ir::Node*, std::vector<ir::Node*>> grad_repeated_map;
std::map<std::string, std::vector<ir::Node*>> created; std::map<std::string, std::vector<ir::Node*>> created;
std::unordered_set<std::string> bn_vars_need_rename; std::unordered_set<std::string> bn_vars_need_rename;
@ -124,10 +126,16 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
if (grad_names.find(outname) != grad_names.end()) { if (grad_names.find(outname) != grad_names.end()) {
std::string new_gname = string::Sprintf("%s.repeat.%d", outname, i); std::string new_gname = string::Sprintf("%s.repeat.%d", outname, i);
repeated_op.RenameOutput(outname, new_gname); repeated_op.RenameOutput(outname, new_gname);
// remove op_role_var for backward ops that outputs grad for a
// parameter.
repeated_op.SetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName(),
std::vector<std::string>());
} }
} }
// 3.5 let batch_norm ops use independent vars, note batch_norm_grad do // 3.5 let batch_norm ops use independent vars, note batch_norm_grad do
// not need this update // not need this update, because only moving mean and variance should be
// differ, trainable parameter scale and bias is the same as other
// parameters.
if (node->Name() == "batch_norm") { if (node->Name() == "batch_norm") {
// NOTE: assume bn op created by layers use save var as output mean and // NOTE: assume bn op created by layers use save var as output mean and
// variance // variance
@ -224,16 +232,25 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
var->inputs.push_back(repeated_node); var->inputs.push_back(repeated_node);
} }
} }
} } // end copy forward backward
// 5. create GRAD merge op node // 5. create GRAD merge op node: sum(repeat.0...repeat.n) ->
// scale(1/num_repeats)
for (auto kv : grad_repeated_map) { for (auto kv : grad_repeated_map) {
OpDesc sum_op; OpDesc sum_op;
sum_op.SetType("sum"); sum_op.SetType("sum");
std::vector<std::string> repeated_grad_names; std::vector<std::string> repeated_grad_names;
std::vector<std::string> param_grad_op_role_var;
for (auto r : kv.second) { for (auto r : kv.second) {
repeated_grad_names.push_back(r->Var()->Name()); repeated_grad_names.push_back(r->Var()->Name());
} }
// NOTE: use op_role_var to control allreduce op appending in
// multi_devices_graph_pass, we want to append op_role_var
// only once for the merged gradient, so break after first call.
param_grad_op_role_var.push_back(
gradname2paramname.at(kv.first->Var()->Name())); // param
param_grad_op_role_var.push_back(kv.first->Var()->Name()); // grad
sum_op.SetInput("X", repeated_grad_names); sum_op.SetInput("X", repeated_grad_names);
sum_op.SetOutput("Out", {kv.first->Var()->Name()}); sum_op.SetOutput("Out", {kv.first->Var()->Name()});
sum_op.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), sum_op.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
@ -256,6 +273,10 @@ std::unique_ptr<Graph> BatchMergePass::ApplyImpl(
scale_op.SetAttr("scale", static_cast<float>(1.0f / num_repeats)); scale_op.SetAttr("scale", static_cast<float>(1.0f / num_repeats));
scale_op.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(), scale_op.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
static_cast<int>(OpRole::kBackward)); static_cast<int>(OpRole::kBackward));
scale_op.SetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName(),
param_grad_op_role_var);
auto scale_op_node = result.CreateOpNode(&scale_op); auto scale_op_node = result.CreateOpNode(&scale_op);
scale_op_node->inputs.push_back(sum_out_var_node); scale_op_node->inputs.push_back(sum_out_var_node);
sum_out_var_node->outputs.push_back(scale_op_node); sum_out_var_node->outputs.push_back(scale_op_node);

@ -16,7 +16,6 @@ limitations under the License. */
#include <glog/logging.h> #include <glog/logging.h>
#include <algorithm> #include <algorithm>
#include "paddle/fluid/framework/data_transform.h" #include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
@ -380,7 +379,7 @@ const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
return &(var.Get<SelectedRows>().value()); return &(var.Get<SelectedRows>().value());
} else { } else {
PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
var.Type().name()); ToTypeName(var.Type()));
} }
} }
@ -391,7 +390,7 @@ Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
return var->GetMutable<SelectedRows>()->mutable_value(); return var->GetMutable<SelectedRows>()->mutable_value();
} else { } else {
PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
var->Type().name()); ToTypeName(var->Type()));
} }
} }
@ -485,7 +484,7 @@ const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
PADDLE_ENFORCE( PADDLE_ENFORCE(
var->IsType<LoDTensor>(), var->IsType<LoDTensor>(),
"should be LoDTensor, but the received type is %s", "should be LoDTensor, but the received type is %s",
var->Type().name()); ToTypeName(var->Type()));
return &(var->Get<LoDTensor>()); return &(var->Get<LoDTensor>());
}); });
return res; return res;
@ -504,7 +503,7 @@ const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
PADDLE_ENFORCE( PADDLE_ENFORCE(
var->IsType<LoDTensor>(), var->IsType<LoDTensor>(),
"%s should be LoDTensor, but the received type is %s", "%s should be LoDTensor, but the received type is %s",
sub_name, var->Type().name()); sub_name, ToTypeName(var->Type()));
return &(var->Get<LoDTensor>()); return &(var->Get<LoDTensor>());
}); });
return res; return res;
@ -533,7 +532,7 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
PADDLE_ENFORCE( PADDLE_ENFORCE(
var->IsType<LoDTensor>(), var->IsType<LoDTensor>(),
"%s should be LoDTensor, but the received type is %s", "%s should be LoDTensor, but the received type is %s",
sub_name, var->Type().name()); sub_name, ToTypeName(var->Type()));
return var->GetMutable<LoDTensor>(); return var->GetMutable<LoDTensor>();
}); });
return res; return res;
@ -775,7 +774,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
PADDLE_THROW( PADDLE_THROW(
"Only LoDTensor/SelectedRows support 'GetDim', but Variables " "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
"type_id is %s.", "type_id is %s.",
var->Type().name()); ToTypeName(var->Type()));
} }
} }
@ -798,7 +797,7 @@ class RuntimeInferShapeContext : public InferShapeContext {
var->GetMutable<SelectedRows>()->set_height(dim[0]); var->GetMutable<SelectedRows>()->set_height(dim[0]);
} else { } else {
PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
var->Type().name()); ToTypeName(var->Type()));
} }
} }
@ -1041,12 +1040,11 @@ Scope* OperatorWithKernel::PrepareData(
proto::VarType::Type OperatorWithKernel::IndicateDataType( proto::VarType::Type OperatorWithKernel::IndicateDataType(
const ExecutionContext& ctx) const { const ExecutionContext& ctx) const {
auto& scope = ctx.scope();
int data_type = -1; int data_type = -1;
std::string last_input_name;
for (auto& input : this->inputs_) { for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) { const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
auto* var = scope.FindVar(ipt_name); for (size_t i = 0; i < vars.size(); ++i) {
const Variable* var = vars[i];
if (var != nullptr) { if (var != nullptr) {
const Tensor* t = nullptr; const Tensor* t = nullptr;
if (var->IsType<Tensor>()) { if (var->IsType<Tensor>()) {
@ -1057,15 +1055,14 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t = &(var->Get<SelectedRows>().value()); t = &(var->Get<SelectedRows>().value());
} }
if (t != nullptr) { if (t != nullptr) {
PADDLE_ENFORCE(t->IsInitialized(), "Input %s is not initialized", PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
ipt_name); input.first, i);
int tmp = static_cast<int>(t->type()); int tmp = static_cast<int>(t->type());
PADDLE_ENFORCE( PADDLE_ENFORCE(
tmp == data_type || data_type == -1, tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)", "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
Type(), last_input_name, data_type, ipt_name, tmp); Type(), data_type, tmp);
data_type = tmp; data_type = tmp;
last_input_name = ipt_name;
} }
} }
} }

@ -81,6 +81,10 @@ class RuntimeContext {
RuntimeContext(const VariableNameMap& innames, RuntimeContext(const VariableNameMap& innames,
const VariableNameMap& outnames, const Scope& scope); const VariableNameMap& outnames, const Scope& scope);
RuntimeContext(const VariableValueMap& invars,
const VariableValueMap& outvars)
: inputs(invars), outputs(outvars) {}
VariableValueMap inputs; VariableValueMap inputs;
VariableValueMap outputs; VariableValueMap outputs;
}; };
@ -447,8 +451,9 @@ class OperatorWithKernel : public OperatorBase {
void RuntimeInferShape(const Scope& scope, const platform::Place& place, void RuntimeInferShape(const Scope& scope, const platform::Place& place,
const RuntimeContext& ctx) const override; const RuntimeContext& ctx) const override;
protected:
virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const; virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
protected:
virtual OpKernelType GetKernelTypeForVar( virtual OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor, const std::string& var_name, const Tensor& tensor,
const OpKernelType& expected_kernel_type) const; const OpKernelType& expected_kernel_type) const;

@ -320,6 +320,7 @@ void ParallelExecutor::BCastParamsToDevices(
if (paddle::platform::is_gpu_place(main_tensor.place())) { if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::vector<void *> buffers; std::vector<void *> buffers;
buffers.reserve(member_->places_.size());
size_t numel = main_tensor.numel(); size_t numel = main_tensor.numel();
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
for (size_t i = 0; i < member_->places_.size(); ++i) { for (size_t i = 0; i < member_->places_.size(); ++i) {
@ -353,9 +354,7 @@ void ParallelExecutor::BCastParamsToDevices(
#endif #endif
} else { } else {
platform::CPUPlace cpu; platform::CPUPlace cpu;
for (size_t i = 0; i < member_->places_.size(); ++i) { for (size_t i = 1; i < member_->places_.size(); ++i) {
if (i == 0) continue;
auto local_scope = member_->local_scopes_[i]; auto local_scope = member_->local_scopes_[i];
auto *t = local_scope->Var(var)->GetMutable<LoDTensor>(); auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();

@ -165,11 +165,9 @@ std::string Scope::Rename(const std::string& origin_name) const {
Variable* Scope::VarInternal(const std::string& name) { Variable* Scope::VarInternal(const std::string& name) {
auto* v = FindVarLocally(name); auto* v = FindVarLocally(name);
if (v != nullptr) return v; if (v != nullptr) return v;
v = new Variable(); v = new Variable();
vars_[name].reset(v); vars_.emplace(name, std::unique_ptr<Variable>(v));
VLOG(3) << "Create variable " << name; VLOG(3) << "Create variable " << name;
v->name_ = &(vars_.find(name)->first);
return v; return v;
} }

@ -19,52 +19,50 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/variable.h" #include "paddle/fluid/framework/variable.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
template <typename T> template <typename T>
inline bool IsType(const std::type_index& type_index) { inline bool IsType(const std::type_index& type) {
return type_index == std::type_index(typeid(T)); return type == typeid(T);
} }
inline proto::VarType::Type ToVarType(std::type_index type) { inline proto::VarType::Type ToVarType(int type) {
if (IsType<LoDTensor>(type)) { switch (type) {
return proto::VarType_Type_LOD_TENSOR; case proto::VarType::LOD_TENSOR:
} else if (IsType<LoDRankTable>(type)) { case proto::VarType::SELECTED_ROWS:
return proto::VarType_Type_LOD_RANK_TABLE; case proto::VarType::LOD_RANK_TABLE:
} else if (IsType<LoDTensorArray>(type)) { case proto::VarType::LOD_TENSOR_ARRAY:
return proto::VarType_Type_LOD_TENSOR_ARRAY; case proto::VarType::READER:
} else if (IsType<SelectedRows>(type)) { return static_cast<proto::VarType::Type>(type);
return proto::VarType_Type_SELECTED_ROWS; default:
} else if (IsType<ReaderHolder>(type)) { PADDLE_THROW("ToVarType:Unsupported type %d", type);
return proto::VarType_Type_READER;
} else {
PADDLE_THROW("ToVarType:Unsupported type %s", type.name());
} }
} }
template <typename Visitor> template <typename Visitor>
inline void VisitVarType(const framework::Variable& var, Visitor visitor) { inline void VisitVarType(const framework::Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) { switch (var.Type()) {
case proto::VarType_Type_LOD_TENSOR: case proto::VarType::LOD_TENSOR:
visitor(var.Get<LoDTensor>()); visitor(var.Get<LoDTensor>());
return; return;
case proto::VarType_Type_LOD_RANK_TABLE: case proto::VarType::LOD_RANK_TABLE:
visitor(var.Get<LoDRankTable>()); visitor(var.Get<LoDRankTable>());
return; return;
case proto::VarType_Type_LOD_TENSOR_ARRAY: case proto::VarType::LOD_TENSOR_ARRAY:
visitor(var.Get<LoDTensorArray>()); visitor(var.Get<LoDTensorArray>());
return; return;
case proto::VarType_Type_SELECTED_ROWS: case proto::VarType::SELECTED_ROWS:
visitor(var.Get<SelectedRows>()); visitor(var.Get<SelectedRows>());
return; return;
case proto::VarType_Type_READER: case proto::VarType::READER:
visitor(var.Get<ReaderHolder>()); visitor(var.Get<ReaderHolder>());
return; return;
default: default:
PADDLE_THROW("Not supported visit type, %d", ToVarType(var.Type())); PADDLE_THROW("Not supported visit type, %s", ToTypeName(var.Type()));
} }
} }

@ -108,7 +108,7 @@ TEST(InferVarType, sum_op_without_infer_var_type) {
op->InferVarType(prog.MutableBlock(0)); op->InferVarType(prog.MutableBlock(0));
ASSERT_EQ(proto::VarType_Type_LOD_TENSOR, ASSERT_EQ(proto::VarType::LOD_TENSOR,
prog.MutableBlock(0)->Var("test2_out")->GetType()); prog.MutableBlock(0)->Var("test2_out")->GetType());
} }

@ -0,0 +1,119 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
#include "paddle/fluid/platform/macros.h"
#ifdef PADDLE_WITH_CUDA
#ifndef _WIN32
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#endif
#include <cudnn.h>
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/operators/cudnn_rnn_cache.h"
#endif
namespace paddle {
namespace framework {
// Besides registering variable type id, it is helpful to register a
// var_id -> std::type_index map (for example, get type names according to id)
namespace detail {
template <int kStart, int kEnd, bool kStop>
struct VarIdToTypeIndexMapInitializerImpl {
template <typename MapType1, typename MapType2>
static void Init(MapType1 *id_to_type, MapType2 *type_to_id) {
using Type =
typename std::tuple_element<kStart, VarTypeRegistry::ArgTuple>::type;
static_assert(!std::is_same<Type, void>::value, "Type cannot be void");
constexpr int kId = VarTypeTrait<Type>::kId;
auto type = std::type_index(typeid(Type));
PADDLE_ENFORCE(id_to_type->count(kId) == 0,
"Registered duplicate type id %d for type %s", kId,
type.name());
PADDLE_ENFORCE(type_to_id->count(type) == 0,
"Registered duplicate type_index %s for id %d", type.name(),
kId);
id_to_type->emplace(kId, type);
type_to_id->emplace(type, kId);
VarIdToTypeIndexMapInitializerImpl<kStart + 1, kEnd,
kStart + 1 == kEnd>::Init(id_to_type,
type_to_id);
}
};
template <int kStart, int kEnd>
struct VarIdToTypeIndexMapInitializerImpl<kStart, kEnd, true> {
template <typename MapType1, typename MapType2>
static void Init(MapType1 *, MapType2 *) {}
};
// VarIdToTypeIndexMapInitializer is designed to initialize var_id ->
// std::type_index map and std::type_index -> var_id map
using VarIdToTypeIndexMapInitializer =
VarIdToTypeIndexMapInitializerImpl<0, VarTypeRegistry::kRegisteredTypeNum,
VarTypeRegistry::kRegisteredTypeNum ==
0>;
struct VarIdToTypeIndexMapHolder {
DISABLE_COPY_AND_ASSIGN(VarIdToTypeIndexMapHolder);
public:
static const std::type_index &ToTypeIndex(int var_id) {
auto it = Instance().id_to_type_map_.find(var_id);
PADDLE_ENFORCE(it != Instance().id_to_type_map_.end(),
"VarId %d is not registered.", var_id);
return it->second;
}
static int ToTypeId(const std::type_index &type) {
auto it = Instance().type_to_id_map_.find(type);
PADDLE_ENFORCE(it != Instance().type_to_id_map_.end(),
"VarType %s is not registered.", type.name());
return it->second;
}
private:
VarIdToTypeIndexMapHolder() {
VarIdToTypeIndexMapInitializer::Init(&id_to_type_map_, &type_to_id_map_);
}
static const VarIdToTypeIndexMapHolder &Instance() {
static const VarIdToTypeIndexMapHolder instance;
return instance;
}
std::unordered_map<int, std::type_index> id_to_type_map_;
std::unordered_map<std::type_index, int> type_to_id_map_;
};
} // namespace detail
const std::type_index &ToTypeIndex(int var_id) {
return detail::VarIdToTypeIndexMapHolder::ToTypeIndex(var_id);
}
const char *ToTypeName(int var_id) { return ToTypeIndex(var_id).name(); }
int ToTypeId(const std::type_index &type) {
return detail::VarIdToTypeIndexMapHolder::ToTypeId(type);
}
} // namespace framework
} // namespace paddle

@ -0,0 +1,195 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <tuple>
#include <typeindex>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#ifndef _WIN32
#include <nccl.h>
#endif
#endif
// Users should add forward declarations here
namespace paddle {
namespace platform {
#ifdef PADDLE_WITH_CUDA
#ifndef _WIN32
class Communicator;
#endif
#endif
} // namespace platform
namespace framework {
class Tensor;
class LoDTensor;
class SelectedRows;
class LoDRankTable;
class ReaderHolder;
class Scope;
} // namespace framework
namespace operators {
template <typename T>
class AlgorithmsCache;
class CudnnRNNCache;
namespace reader {
class LoDTensorBlockingQueueHolder;
} // namespace reader
} // namespace operators
} // namespace paddle
namespace paddle {
namespace framework {
const char *ToTypeName(int var_id);
const std::type_index &ToTypeIndex(int var_id);
int ToTypeId(const std::type_index &type);
namespace detail {
template <bool kStop, int kStart, int kEnd, typename T1, typename T2,
typename... Args>
struct TypePosFinderImpl {
static constexpr int kPos =
std::is_same<T1, T2>::value
? kStart
: TypePosFinderImpl<kStart + 2 == kEnd, kStart + 1, kEnd, T1,
Args...>::kPos;
};
template <int kStart, int kEnd, typename T1, typename T2>
struct TypePosFinderImpl<true, kStart, kEnd, T1, T2> {
static constexpr int kPos = std::is_same<T1, T2>::value ? kStart : -1;
};
// TypePosFinder helps to find the position in which T is inside Args...
// If T is not inside Args..., kPos would be -1
template <typename T, typename... Args>
struct TypePosFinder {
static constexpr int kPos =
TypePosFinderImpl<sizeof...(Args) == 1, 0, sizeof...(Args), T,
Args...>::kPos;
};
template <typename... Args>
struct VarTypeRegistryImpl {
static constexpr size_t kRegisteredTypeNum = sizeof...(Args);
using ArgTuple = std::tuple<Args...>;
// TypePos() returns the position in which T is inside Args...
// If T is not inside Args..., return -1
template <typename T>
static constexpr int TypePos() {
return TypePosFinder<T, Args...>::kPos;
}
// IsRegistered() returns whether T is registered inside RegistryImpl
template <typename T>
static constexpr bool IsRegistered() {
return TypePos<T>() >= 0;
}
};
} // namespace detail
#define REG_PROTO_VAR_TYPE_TRAIT(type, proto_id) \
template <> \
struct VarTypeTrait<type> { \
static_assert(VarTypeRegistry::IsRegistered<type>(), \
"Must be registered type"); \
using Type = type; \
static constexpr int kId = static_cast<int>(proto_id); \
}
/**
* The following codes are designed to register variable types.
* Only registered types can be stored in Variable.
* This registry mechanism is designed to speed up Variable.
*
* Caution: If you want to add more var types, please consider carefully
* whether you really need to add it.
*/
// Users should add other variable types below.
// Paddle would generate unique Ids for each registered variable types.
using VarTypeRegistry = detail::VarTypeRegistryImpl<
Tensor, LoDTensor, SelectedRows, std::vector<Scope *>, LoDRankTable,
LoDTensorArray, platform::PlaceList, ReaderHolder, std::string, Scope *,
std::map<size_t, Tensor>, operators::reader::LoDTensorBlockingQueueHolder,
#ifdef PADDLE_WITH_CUDA
#ifndef _WIN32
ncclUniqueId, platform::Communicator,
#endif
operators::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>,
operators::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>,
operators::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>,
operators::CudnnRNNCache,
#endif
int, float>;
template <typename T>
struct VarTypeTrait {
static_assert(VarTypeRegistry::IsRegistered<T>(), "Must be registered type");
using Type = T;
/**
* Unique VarType Id generation.
*
* The auto-generated id should not be the same as any protobuf id defined in
* framework.proto. Therefore, we generate id by adding the type pos and
* maximum protobuf id (i.e., proto::VarType::TUPLE).
*
* However, we may need more protobuf id in the future.
* To avoid changing this auto id generation algorithm frequently, we
* generate id by adding the type pos and twice of maximum protobuf id (i.e.,
* proto::VarType::TUPLE).
*/
static constexpr int kId = VarTypeRegistry::TypePos<T>() +
static_cast<int>(proto::VarType::TUPLE) * 2;
};
// Users should set some of variable type ids to be what is defined in
// framework.proto below
REG_PROTO_VAR_TYPE_TRAIT(LoDTensor, proto::VarType::LOD_TENSOR);
REG_PROTO_VAR_TYPE_TRAIT(SelectedRows, proto::VarType::SELECTED_ROWS);
REG_PROTO_VAR_TYPE_TRAIT(std::vector<Scope *>, proto::VarType::STEP_SCOPES);
REG_PROTO_VAR_TYPE_TRAIT(LoDRankTable, proto::VarType::LOD_RANK_TABLE);
REG_PROTO_VAR_TYPE_TRAIT(LoDTensorArray, proto::VarType::LOD_TENSOR_ARRAY);
REG_PROTO_VAR_TYPE_TRAIT(platform::PlaceList, proto::VarType::PLACE_LIST);
REG_PROTO_VAR_TYPE_TRAIT(ReaderHolder, proto::VarType::READER);
REG_PROTO_VAR_TYPE_TRAIT(int, proto::VarType::INT32);
REG_PROTO_VAR_TYPE_TRAIT(float, proto::VarType::FP32);
/** End of variable type registration */
template <typename T>
inline constexpr bool IsRegisteredVarType() {
return VarTypeRegistry::IsRegistered<T>();
}
#undef REG_PROTO_VAR_TYPE_TRAIT
} // namespace framework
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save