Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into poolmaxpool_with_mask
commit
9e894f6b0a
@ -0,0 +1,220 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "ROIPoolLayer.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
REGISTER_LAYER(roi_pool, ROIPoolLayer);
|
||||||
|
|
||||||
|
bool ROIPoolLayer::init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) {
|
||||||
|
Layer::init(layerMap, parameterMap);
|
||||||
|
|
||||||
|
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
|
||||||
|
pooledWidth_ = layerConf.pooled_width();
|
||||||
|
pooledHeight_ = layerConf.pooled_height();
|
||||||
|
spatialScale_ = layerConf.spatial_scale();
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ROIPoolLayer::forward(PassType passType) {
|
||||||
|
Layer::forward(passType);
|
||||||
|
|
||||||
|
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
|
||||||
|
height_ = getInput(0).getFrameHeight();
|
||||||
|
if (!height_) height_ = layerConf.height();
|
||||||
|
width_ = getInput(0).getFrameWidth();
|
||||||
|
if (!width_) width_ = layerConf.width();
|
||||||
|
channels_ = getInputValue(0)->getWidth() / width_ / height_;
|
||||||
|
|
||||||
|
size_t batchSize = getInput(0).getBatchSize();
|
||||||
|
size_t numROIs = getInput(1).getBatchSize();
|
||||||
|
|
||||||
|
MatrixPtr dataValue = getInputValue(0);
|
||||||
|
MatrixPtr roiValue = getInputValue(1);
|
||||||
|
resetOutput(numROIs, channels_ * pooledHeight_ * pooledWidth_);
|
||||||
|
MatrixPtr outputValue = getOutputValue();
|
||||||
|
|
||||||
|
if (useGpu_) { // TODO(guosheng): implement on GPU later
|
||||||
|
MatrixPtr dataCpuBuffer;
|
||||||
|
Matrix::resizeOrCreate(dataCpuBuffer,
|
||||||
|
dataValue->getHeight(),
|
||||||
|
dataValue->getWidth(),
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
MatrixPtr roiCpuBuffer;
|
||||||
|
Matrix::resizeOrCreate(roiCpuBuffer,
|
||||||
|
roiValue->getHeight(),
|
||||||
|
roiValue->getWidth(),
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
dataCpuBuffer->copyFrom(*dataValue);
|
||||||
|
roiCpuBuffer->copyFrom(*roiValue);
|
||||||
|
dataValue = dataCpuBuffer;
|
||||||
|
roiValue = roiCpuBuffer;
|
||||||
|
MatrixPtr outputCpuBuffer;
|
||||||
|
Matrix::resizeOrCreate(outputCpuBuffer,
|
||||||
|
outputValue->getHeight(),
|
||||||
|
outputValue->getWidth(),
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
outputCpuBuffer->copyFrom(*outputValue);
|
||||||
|
outputValue = outputCpuBuffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
real* bottomData = dataValue->getData();
|
||||||
|
size_t batchOffset = dataValue->getWidth();
|
||||||
|
size_t channelOffset = height_ * width_;
|
||||||
|
real* bottomROIs = roiValue->getData();
|
||||||
|
size_t roiOffset = roiValue->getWidth();
|
||||||
|
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
|
||||||
|
|
||||||
|
real* outputData = outputValue->getData();
|
||||||
|
Matrix::resizeOrCreate(maxIdxs_,
|
||||||
|
numROIs,
|
||||||
|
channels_ * pooledHeight_ * pooledWidth_,
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
real* argmaxData = maxIdxs_->getData();
|
||||||
|
|
||||||
|
for (size_t n = 0; n < numROIs; ++n) {
|
||||||
|
// the first five elememts of each RoI should be:
|
||||||
|
// batch_idx, roi_x_start, roi_y_start, roi_x_end, roi_y_end
|
||||||
|
size_t roiBatchIdx = bottomROIs[0];
|
||||||
|
size_t roiStartW = round(bottomROIs[1] * spatialScale_);
|
||||||
|
size_t roiStartH = round(bottomROIs[2] * spatialScale_);
|
||||||
|
size_t roiEndW = round(bottomROIs[3] * spatialScale_);
|
||||||
|
size_t roiEndH = round(bottomROIs[4] * spatialScale_);
|
||||||
|
CHECK_GE(roiBatchIdx, 0);
|
||||||
|
CHECK_LT(roiBatchIdx, batchSize);
|
||||||
|
size_t roiHeight = std::max(roiEndH - roiStartH + 1, 1UL);
|
||||||
|
size_t roiWidth = std::max(roiEndW - roiStartW + 1, 1UL);
|
||||||
|
real binSizeH =
|
||||||
|
static_cast<real>(roiHeight) / static_cast<real>(pooledHeight_);
|
||||||
|
real binSizeW =
|
||||||
|
static_cast<real>(roiWidth) / static_cast<real>(pooledWidth_);
|
||||||
|
real* batchData = bottomData + batchOffset * roiBatchIdx;
|
||||||
|
for (size_t c = 0; c < channels_; ++c) {
|
||||||
|
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
|
||||||
|
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
|
||||||
|
size_t hstart = static_cast<size_t>(std::floor(ph * binSizeH));
|
||||||
|
size_t wstart = static_cast<size_t>(std::floor(pw * binSizeW));
|
||||||
|
size_t hend = static_cast<size_t>(std::ceil((ph + 1) * binSizeH));
|
||||||
|
size_t wend = static_cast<size_t>(std::ceil((pw + 1) * binSizeW));
|
||||||
|
hstart = std::min(std::max(hstart + roiStartH, 0UL), height_);
|
||||||
|
wstart = std::min(std::max(wstart + roiStartW, 0UL), width_);
|
||||||
|
hend = std::min(std::max(hend + roiStartH, 0UL), height_);
|
||||||
|
wend = std::min(std::max(wend + roiStartW, 0UL), width_);
|
||||||
|
|
||||||
|
bool isEmpty = (hend <= hstart) || (wend <= wstart);
|
||||||
|
size_t poolIndex = ph * pooledWidth_ + pw;
|
||||||
|
if (isEmpty) {
|
||||||
|
outputData[poolIndex] = 0;
|
||||||
|
argmaxData[poolIndex] = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (size_t h = hstart; h < hend; ++h) {
|
||||||
|
for (size_t w = wstart; w < wend; ++w) {
|
||||||
|
size_t index = h * width_ + w;
|
||||||
|
if (batchData[index] > outputData[poolIndex]) {
|
||||||
|
outputData[poolIndex] = batchData[index];
|
||||||
|
argmaxData[poolIndex] = index;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
batchData += channelOffset;
|
||||||
|
outputData += poolChannelOffset;
|
||||||
|
argmaxData += poolChannelOffset;
|
||||||
|
}
|
||||||
|
bottomROIs += roiOffset;
|
||||||
|
}
|
||||||
|
if (useGpu_) {
|
||||||
|
getOutputValue()->copyFrom(*outputValue);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ROIPoolLayer::backward(const UpdateCallback& callback) {
|
||||||
|
MatrixPtr inGradValue = getInputGrad(0);
|
||||||
|
MatrixPtr outGradValue = getOutputGrad();
|
||||||
|
MatrixPtr roiValue = getInputValue(1);
|
||||||
|
|
||||||
|
if (useGpu_) {
|
||||||
|
MatrixPtr inGradCpuBuffer;
|
||||||
|
Matrix::resizeOrCreate(inGradCpuBuffer,
|
||||||
|
inGradValue->getHeight(),
|
||||||
|
inGradValue->getWidth(),
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
MatrixPtr outGradCpuBuffer;
|
||||||
|
Matrix::resizeOrCreate(outGradCpuBuffer,
|
||||||
|
outGradValue->getHeight(),
|
||||||
|
outGradValue->getWidth(),
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
MatrixPtr roiCpuBuffer;
|
||||||
|
Matrix::resizeOrCreate(roiCpuBuffer,
|
||||||
|
roiValue->getHeight(),
|
||||||
|
roiValue->getWidth(),
|
||||||
|
false,
|
||||||
|
false);
|
||||||
|
inGradCpuBuffer->copyFrom(*inGradValue);
|
||||||
|
outGradCpuBuffer->copyFrom(*outGradValue);
|
||||||
|
roiCpuBuffer->copyFrom(*roiValue);
|
||||||
|
inGradValue = inGradCpuBuffer;
|
||||||
|
outGradValue = outGradCpuBuffer;
|
||||||
|
roiValue = roiCpuBuffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
real* bottomROIs = roiValue->getData();
|
||||||
|
size_t numROIs = getInput(1).getBatchSize();
|
||||||
|
size_t roiOffset = getInputValue(1)->getWidth();
|
||||||
|
|
||||||
|
real* inDiffData = inGradValue->getData();
|
||||||
|
size_t batchOffset = getInputValue(0)->getWidth();
|
||||||
|
size_t channelOffset = height_ * width_;
|
||||||
|
|
||||||
|
real* outDiffData = outGradValue->getData();
|
||||||
|
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
|
||||||
|
real* argmaxData = maxIdxs_->getData();
|
||||||
|
|
||||||
|
for (size_t n = 0; n < numROIs; ++n) {
|
||||||
|
size_t roiBatchIdx = bottomROIs[0];
|
||||||
|
real* batchDiffData = inDiffData + batchOffset * roiBatchIdx;
|
||||||
|
for (size_t c = 0; c < channels_; ++c) {
|
||||||
|
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
|
||||||
|
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
|
||||||
|
size_t poolIndex = ph * pooledWidth_ + pw;
|
||||||
|
if (argmaxData[poolIndex] > 0) {
|
||||||
|
size_t index = static_cast<size_t>(argmaxData[poolIndex]);
|
||||||
|
batchDiffData[index] += outDiffData[poolIndex];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
batchDiffData += channelOffset;
|
||||||
|
outDiffData += poolChannelOffset;
|
||||||
|
argmaxData += poolChannelOffset;
|
||||||
|
}
|
||||||
|
bottomROIs += roiOffset;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (useGpu_) {
|
||||||
|
getInputGrad(0)->copyFrom(*inGradValue);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,56 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "Layer.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A layer used by Fast R-CNN to extract feature maps of ROIs from the last
|
||||||
|
* feature map.
|
||||||
|
* - Input: This layer needs two input layers: The first input layer is a
|
||||||
|
* convolution layer; The second input layer contains the ROI data
|
||||||
|
* which is the output of ProposalLayer in Faster R-CNN. layers for
|
||||||
|
* generating bbox location offset and the classification confidence.
|
||||||
|
* - Output: The ROIs' feature map.
|
||||||
|
* Reference:
|
||||||
|
* Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
|
||||||
|
* Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
|
||||||
|
* Networks
|
||||||
|
*/
|
||||||
|
|
||||||
|
class ROIPoolLayer : public Layer {
|
||||||
|
protected:
|
||||||
|
size_t channels_;
|
||||||
|
size_t width_;
|
||||||
|
size_t height_;
|
||||||
|
size_t pooledWidth_;
|
||||||
|
size_t pooledHeight_;
|
||||||
|
real spatialScale_;
|
||||||
|
|
||||||
|
// Since there is no int matrix, use real maxtrix instead.
|
||||||
|
MatrixPtr maxIdxs_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
explicit ROIPoolLayer(const LayerConfig& config) : Layer(config) {}
|
||||||
|
|
||||||
|
bool init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) override;
|
||||||
|
|
||||||
|
void forward(PassType passType) override;
|
||||||
|
void backward(const UpdateCallback& callback = nullptr) override;
|
||||||
|
};
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,50 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <mutex>
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace platform {
|
||||||
|
|
||||||
|
/*
|
||||||
|
The current implementation of std::call_once has a bug described in
|
||||||
|
https://stackoverflow.com/questions/41717579/stdcall-once-hangs-on-second-call-after-callable-threw-on-first-call.
|
||||||
|
This is likely caused by a deeper bug of pthread_once, which is discussed in
|
||||||
|
https://patchwork.ozlabs.org/patch/482350/
|
||||||
|
|
||||||
|
This wrap is a hack to avoid this bug.
|
||||||
|
*/
|
||||||
|
template <class Callable, class... Args>
|
||||||
|
inline void call_once(std::once_flag& flag, Callable&& f, Args&&... args) {
|
||||||
|
bool good = false;
|
||||||
|
std::exception ex;
|
||||||
|
std::call_once(flag, [&]() {
|
||||||
|
try {
|
||||||
|
f(args...);
|
||||||
|
good = true;
|
||||||
|
} catch (const std::exception& e) {
|
||||||
|
ex = e;
|
||||||
|
} catch (...) {
|
||||||
|
ex = std::runtime_error("excption caught in call_once");
|
||||||
|
}
|
||||||
|
});
|
||||||
|
if (!good) {
|
||||||
|
throw std::exception(ex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace platform
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,98 @@
|
|||||||
|
type: "nn"
|
||||||
|
layers {
|
||||||
|
name: "data"
|
||||||
|
type: "data"
|
||||||
|
size: 588
|
||||||
|
active_type: ""
|
||||||
|
height: 14
|
||||||
|
width: 14
|
||||||
|
}
|
||||||
|
layers {
|
||||||
|
name: "rois"
|
||||||
|
type: "data"
|
||||||
|
size: 10
|
||||||
|
active_type: ""
|
||||||
|
}
|
||||||
|
layers {
|
||||||
|
name: "__conv_0__"
|
||||||
|
type: "exconv"
|
||||||
|
size: 3136
|
||||||
|
active_type: ""
|
||||||
|
inputs {
|
||||||
|
input_layer_name: "data"
|
||||||
|
input_parameter_name: "___conv_0__.w0"
|
||||||
|
conv_conf {
|
||||||
|
filter_size: 3
|
||||||
|
channels: 3
|
||||||
|
stride: 1
|
||||||
|
padding: 1
|
||||||
|
groups: 1
|
||||||
|
filter_channels: 3
|
||||||
|
output_x: 14
|
||||||
|
img_size: 14
|
||||||
|
caffe_mode: true
|
||||||
|
filter_size_y: 3
|
||||||
|
padding_y: 1
|
||||||
|
stride_y: 1
|
||||||
|
output_y: 14
|
||||||
|
img_size_y: 14
|
||||||
|
}
|
||||||
|
}
|
||||||
|
bias_parameter_name: "___conv_0__.wbias"
|
||||||
|
num_filters: 16
|
||||||
|
shared_biases: true
|
||||||
|
height: 14
|
||||||
|
width: 14
|
||||||
|
}
|
||||||
|
layers {
|
||||||
|
name: "__roi_pool_0__"
|
||||||
|
type: "roi_pool"
|
||||||
|
size: 784
|
||||||
|
active_type: ""
|
||||||
|
inputs {
|
||||||
|
input_layer_name: "__conv_0__"
|
||||||
|
roi_pool_conf {
|
||||||
|
pooled_width: 7
|
||||||
|
pooled_height: 7
|
||||||
|
spatial_scale: 0.0625
|
||||||
|
}
|
||||||
|
}
|
||||||
|
inputs {
|
||||||
|
input_layer_name: "rois"
|
||||||
|
}
|
||||||
|
height: 7
|
||||||
|
width: 7
|
||||||
|
}
|
||||||
|
parameters {
|
||||||
|
name: "___conv_0__.w0"
|
||||||
|
size: 432
|
||||||
|
initial_mean: 0.0
|
||||||
|
initial_std: 0.272165526976
|
||||||
|
initial_strategy: 0
|
||||||
|
initial_smart: false
|
||||||
|
}
|
||||||
|
parameters {
|
||||||
|
name: "___conv_0__.wbias"
|
||||||
|
size: 16
|
||||||
|
initial_mean: 0.0
|
||||||
|
initial_std: 0.0
|
||||||
|
dims: 16
|
||||||
|
dims: 1
|
||||||
|
initial_strategy: 0
|
||||||
|
initial_smart: false
|
||||||
|
}
|
||||||
|
input_layer_names: "data"
|
||||||
|
input_layer_names: "rois"
|
||||||
|
output_layer_names: "__roi_pool_0__"
|
||||||
|
sub_models {
|
||||||
|
name: "root"
|
||||||
|
layer_names: "data"
|
||||||
|
layer_names: "rois"
|
||||||
|
layer_names: "__conv_0__"
|
||||||
|
layer_names: "__roi_pool_0__"
|
||||||
|
input_layer_names: "data"
|
||||||
|
input_layer_names: "rois"
|
||||||
|
output_layer_names: "__roi_pool_0__"
|
||||||
|
is_recurrent_layer_group: false
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,23 @@
|
|||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
data = data_layer(name='data', size=3 * 14 * 14, height=14, width=14)
|
||||||
|
|
||||||
|
rois = data_layer(name='rois', size=10)
|
||||||
|
|
||||||
|
conv = img_conv_layer(
|
||||||
|
input=data,
|
||||||
|
filter_size=3,
|
||||||
|
num_channels=3,
|
||||||
|
num_filters=16,
|
||||||
|
padding=1,
|
||||||
|
act=LinearActivation(),
|
||||||
|
bias_attr=True)
|
||||||
|
|
||||||
|
roi_pool = roi_pool_layer(
|
||||||
|
input=conv,
|
||||||
|
rois=rois,
|
||||||
|
pooled_width=7,
|
||||||
|
pooled_height=7,
|
||||||
|
spatial_scale=1. / 16)
|
||||||
|
|
||||||
|
outputs(roi_pool)
|
Loading…
Reference in new issue