update to develop branch.

fixstartbug
dangqingqing 8 years ago
commit 9f490c7748

@ -24,7 +24,7 @@
description: Format files with ClangFormat. description: Format files with ClangFormat.
entry: clang-format -i entry: clang-format -i
language: system language: system
files: \.(c|cc|cxx|cpp|h|hpp|hxx)$ files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$
- repo: https://github.com/PaddlePaddle/pre-commit-golang - repo: https://github.com/PaddlePaddle/pre-commit-golang
sha: 8337620115c25ff8333f1b1a493bd031049bd7c0 sha: 8337620115c25ff8333f1b1a493bd031049bd7c0
hooks: hooks:

@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND})
option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF) option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)

@ -27,13 +27,16 @@ RUN apt-get update && \
git python-pip python-dev openssh-server bison \ git python-pip python-dev openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \ curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-numpy python-matplotlib gcc-4.8 g++-4.8 \ python-matplotlib gcc-4.8 g++-4.8 \
automake locales clang-format-3.8 swig doxygen cmake \ automake locales clang-format-3.8 swig doxygen cmake \
liblapack-dev liblapacke-dev libboost-dev \ liblapack-dev liblapacke-dev libboost-dev \
clang-3.8 llvm-3.8 libclang-3.8-dev \ clang-3.8 llvm-3.8 libclang-3.8-dev \
net-tools && \ net-tools && \
apt-get clean -y apt-get clean -y
# paddle is using numpy.flip, which is introduced since 1.12.0
RUN pip --no-cache-dir install 'numpy>=1.12.0'
# Install Go and glide # Install Go and glide
RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \ RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C /usr/local -xzf go.tgz && \ tar -C /usr/local -xzf go.tgz && \

@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
- [Deep Learning 101](http://book.paddlepaddle.org/index.html) - [Deep Learning 101](http://book.paddlepaddle.org/index.html)
You might want to start from the this online interactive book that can run in Jupyter Notebook. You might want to start from this online interactive book that can run in Jupyter Notebook.
- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) - [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)

@ -74,8 +74,6 @@ if(WITH_MKLDNN)
set(OPENMP_FLAGS "-fopenmp") set(OPENMP_FLAGS "-fopenmp")
set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OPENMP_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OPENMP_FLAGS}")
else() else()

@ -56,11 +56,14 @@ macro(add_style_check_target TARGET_NAME)
# cpplint code style # cpplint code style
get_filename_component(base_filename ${filename} NAME) get_filename_component(base_filename ${filename} NAME)
set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint) set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint)
add_custom_command(TARGET ${TARGET_NAME} PRE_BUILD add_custom_command(OUTPUT ${CUR_GEN} PRE_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py" COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}" "--filter=${STYLE_FILTER}"
"--write-success=${CUR_GEN}" ${filename} "--write-success=${CUR_GEN}" ${filename}
DEPENDS ${filename} ${PROJ_ROOT}/paddle/scripts/cpplint.py
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
add_custom_target(${base_filename}.cpplint DEPENDS ${CUR_GEN})
add_dependencies(${TARGET_NAME} ${base_filename}.cpplint)
endif() endif()
endforeach() endforeach()
endif() endif()

@ -28,7 +28,14 @@ INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
ExternalProject_Add( ExternalProject_Add(
extern_gflags extern_gflags
${EXTERNAL_PROJECT_LOG_ARGS} ${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/gflags/gflags.git" # TODO(yiwang): The annoying warnings mentioned in
# https://github.com/PaddlePaddle/Paddle/issues/3277 are caused by
# gflags. I fired a PR https://github.com/gflags/gflags/pull/230
# to fix it. Before it gets accepted by the gflags team, we use
# my personal fork, which contains above fix, temporarily. Let's
# change this back to the official Github repo once my PR is
# merged.
GIT_REPOSITORY "https://github.com/wangkuiyi/gflags.git"
PREFIX ${GFLAGS_SOURCES_DIR} PREFIX ${GFLAGS_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}

@ -20,34 +20,30 @@ INCLUDE(ExternalProject)
SET(MKLDNN_PROJECT "extern_mkldnn") SET(MKLDNN_PROJECT "extern_mkldnn")
SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn) SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_ROOT ${CMAKE_INSTALL_PREFIX}) SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
IF(NOT "$ENV{HOME}" STREQUAL "/root") SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
SET(MKLDNN_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLDNN_INSTALL_DIR "${MKLDNN_INSTALL_ROOT}/opt/paddle/third_party/mkldnn")
SET(MKLDNN_INCLUDE_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32) IF(WIN32 OR APPLE)
MESSAGE(WARNING "It is not supported compiling with mkldnn in windows Paddle yet." MESSAGE(WARNING
"Windows or Mac is not supported with MKLDNN in Paddle yet."
"Force WITH_MKLDNN=OFF") "Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF) SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE)
return() return()
ELSE(WIN32) ENDIF()
SET(MKLDNN_LIBRARY "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
#SET(CMAKE_MACOSX_RPATH 1) # hold for MacOS
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${MKLDNN_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR})
IF(${CBLAS_PROVIDER} STREQUAL "MKLML") IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
SET(MKLDNN_MKLROOT ${MKLML_ROOT}) SET(MKLDNN_MKLROOT ${MKLML_ROOT})
SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB}) SET(MKLDNN_IOMP_LIB ${MKLML_IOMP_LIB})
SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR}) SET(MKLDNN_IOMP_DIR ${MKLML_LIB_DIR})
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF() ENDIF()
ExternalProject_Add( ExternalProject_Add(
@ -57,16 +53,15 @@ ExternalProject_Add(
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.9" GIT_TAG "v0.9"
PREFIX ${MKLDNN_SOURCES_DIR} PREFIX ${MKLDNN_SOURCES_DIR}
CONFIGURE_COMMAND mkdir -p <SOURCE_DIR>/build
BUILD_COMMAND cd <SOURCE_DIR>/build
&& cmake .. -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} -DMKLROOT=${MKLDNN_MKLROOT}
&& $(MAKE)
INSTALL_COMMAND cd <SOURCE_DIR>/build && $(MAKE) install
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
) )
ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIBRARY}) SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIBRARY}") MESSAGE(STATUS "Mkldnn library: ${MKLDNN_LIB}")
LIST(APPEND external_project_dependencies mkldnn) LIST(APPEND external_project_dependencies mkldnn)

@ -16,19 +16,23 @@ IF(NOT ${WITH_MKLML})
return() return()
ENDIF(NOT ${WITH_MKLML}) ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml") SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170425") SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz") SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "opt/paddle/third_party/mklml") SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${CMAKE_INSTALL_PREFIX}") SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
IF(NOT "$ENV{HOME}" STREQUAL "/root")
SET(MKLML_INSTALL_ROOT "$ENV{HOME}")
ENDIF()
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR}) SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER}) SET(MKLML_ROOT ${MKLML_INSTALL_DIR}/${MKLML_VER})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include) SET(MKLML_INC_DIR ${MKLML_ROOT}/include)

@ -24,7 +24,6 @@ IF(WITH_PYTHON)
ENDIF(WITH_PYTHON) ENDIF(WITH_PYTHON)
SET(py_env "") SET(py_env "")
SET(USE_VIRTUALENV_FOR_TEST 1)
IF(PYTHONINTERP_FOUND) IF(PYTHONINTERP_FOUND)
find_python_module(pip REQUIRED) find_python_module(pip REQUIRED)
find_python_module(numpy REQUIRED) find_python_module(numpy REQUIRED)

@ -187,7 +187,13 @@ function(cc_library TARGET_NAME)
endif() endif()
# cpplint code style # cpplint code style
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS}) foreach(source_file ${cc_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS})
else(cc_library_SRCS) else(cc_library_SRCS)
if (cc_library_DEPS) if (cc_library_DEPS)
@ -239,6 +245,14 @@ function(nv_library TARGET_NAME)
add_dependencies(${TARGET_NAME} ${nv_library_DEPS}) add_dependencies(${TARGET_NAME} ${nv_library_DEPS})
target_link_libraries(${TARGET_NAME} ${nv_library_DEPS}) target_link_libraries(${TARGET_NAME} ${nv_library_DEPS})
endif() endif()
# cpplint code style
foreach(source_file ${nv_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS})
else(nv_library_SRCS) else(nv_library_SRCS)
if (nv_library_DEPS) if (nv_library_DEPS)
merge_static_libs(${TARGET_NAME} ${nv_library_DEPS}) merge_static_libs(${TARGET_NAME} ${nv_library_DEPS})

@ -118,7 +118,6 @@ endfunction()
macro(add_unittest_without_exec TARGET_NAME) macro(add_unittest_without_exec TARGET_NAME)
add_executable(${TARGET_NAME} ${ARGN}) add_executable(${TARGET_NAME} ${ARGN})
link_paddle_test(${TARGET_NAME}) link_paddle_test(${TARGET_NAME})
add_style_check_target(${TARGET_NAME} ${ARGN})
endmacro() endmacro()
# add_unittest # add_unittest
@ -150,9 +149,12 @@ endfunction()
# Create a python unittest using run_python_tests.sh, # Create a python unittest using run_python_tests.sh,
# which takes care of making correct running environment # which takes care of making correct running environment
function(add_python_test TEST_NAME) function(add_python_test TEST_NAME)
add_test(NAME ${TEST_NAME} foreach(arg ${ARGN})
COMMAND env PADDLE_PACKAGE_DIR=${PADDLE_PYTHON_PACKAGE_DIR} get_filename_component(py_fn ${arg} NAME_WE)
bash ${PROJ_ROOT}/paddle/scripts/run_python_tests.sh set(TRG_NAME ${TEST_NAME}_${py_fn})
${USE_VIRTUALENV_FOR_TEST} ${PYTHON_EXECUTABLE} ${ARGN} add_test(NAME ${TRG_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR}
python2 ${arg}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endforeach()
endfunction() endfunction()

@ -21,8 +21,6 @@
# #
# It same as PYTHONPATH=${YOUR_PYTHON_PATH}:$PYTHONPATH {exec...} # It same as PYTHONPATH=${YOUR_PYTHON_PATH}:$PYTHONPATH {exec...}
# #
if ! python -c "import paddle" >/dev/null 2>/dev/null; then
PYPATH="" PYPATH=""
set -x set -x
while getopts "d:" opt; do while getopts "d:" opt; do
@ -35,8 +33,3 @@ if ! python -c "import paddle" >/dev/null 2>/dev/null; then
shift $(($OPTIND - 1)) shift $(($OPTIND - 1))
export PYTHONPATH=$PYPATH:$PYTHONPATH export PYTHONPATH=$PYPATH:$PYTHONPATH
$@ $@
else
echo "paddle package is already in your PYTHONPATH. But unittest need a clean environment."
echo "Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'"
exit 1
fi

@ -15,7 +15,6 @@ if(Boost_FOUND)
add_subdirectory(platform) add_subdirectory(platform)
add_subdirectory(framework) add_subdirectory(framework)
add_subdirectory(operators) add_subdirectory(operators)
add_subdirectory(pybind)
endif() endif()
if(WITH_C_API) if(WITH_C_API)

@ -12,17 +12,15 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "hl_batch_transpose.h"
#include "hl_base.h" #include "hl_base.h"
#include "hl_batch_transpose.h"
const int TILE_DIM = 64; const int TILE_DIM = 64;
const int BLOCK_ROWS = 16; const int BLOCK_ROWS = 16;
// No bank-conflict transpose for a batch of data. // No bank-conflict transpose for a batch of data.
__global__ void batchTransposeNoBankConflicts(real* odata, __global__ void batchTransposeNoBankConflicts(
const real* idata, real* odata, const real* idata, int numSamples, int width, int height) {
int numSamples, int width,
int height) {
__shared__ float tile[TILE_DIM][TILE_DIM + 1]; __shared__ float tile[TILE_DIM][TILE_DIM + 1];
const int x = blockIdx.x * TILE_DIM + threadIdx.x; const int x = blockIdx.x * TILE_DIM + threadIdx.x;
@ -50,12 +48,12 @@ __global__ void batchTransposeNoBankConflicts(real* odata,
newX] = tile[threadIdx.x][j]; newX] = tile[threadIdx.x][j];
} }
void batchTranspose(const real* input, real* output, int width, int height, void batchTranspose(
int batchSize) { const real* input, real* output, int width, int height, int batchSize) {
dim3 dimBlock(TILE_DIM, BLOCK_ROWS, 1); dim3 dimBlock(TILE_DIM, BLOCK_ROWS, 1);
dim3 dimGrid(DIVUP(width, TILE_DIM), DIVUP(height, TILE_DIM), batchSize); dim3 dimGrid(DIVUP(width, TILE_DIM), DIVUP(height, TILE_DIM), batchSize);
batchTransposeNoBankConflicts<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>> batchTransposeNoBankConflicts<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>(
(output, input, batchSize, width, height); output, input, batchSize, width, height);
CHECK_SYNC("batchTranspose failed!"); CHECK_SYNC("batchTranspose failed!");
} }

@ -12,23 +12,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "hl_aggregate.h"
#include "hl_base.h" #include "hl_base.h"
#include "hl_cuda.h" #include "hl_cuda.h"
#include "hl_cuda.ph" #include "hl_cuda.ph"
#include "hl_aggregate.h"
#include "hl_thread.ph"
#include "hl_matrix_base.cuh" #include "hl_matrix_base.cuh"
#include "hl_thread.ph"
#include "paddle/utils/Logging.h" #include "paddle/utils/Logging.h"
/** /**
* @brief matrix row operator. * @brief matrix row operator.
*/ */
template <class Agg, int blockSize> template <class Agg, int blockSize>
__global__ void KeMatrixRowOp(Agg agg, __global__ void KeMatrixRowOp(Agg agg, real *E, real *Sum, int dimN) {
real *E,
real *Sum,
int dimN) {
__shared__ real sum_s[blockSize]; __shared__ real sum_s[blockSize];
int cnt = (dimN + blockSize - 1) / blockSize; int cnt = (dimN + blockSize - 1) / blockSize;
int rowId = blockIdx.x + blockIdx.y * gridDim.x; int rowId = blockIdx.x + blockIdx.y * gridDim.x;
@ -58,29 +54,21 @@ __global__ void KeMatrixRowOp(Agg agg,
} }
template <class Agg> template <class Agg>
void hl_matrix_row_op(Agg agg, void hl_matrix_row_op(Agg agg, real *A_d, real *C_d, int dimM, int dimN) {
real *A_d,
real *C_d,
int dimM,
int dimN) {
int blocksX = dimM; int blocksX = dimM;
int blocksY = 1; int blocksY = 1;
dim3 threads(128, 1); dim3 threads(128, 1);
dim3 grid(blocksX, blocksY); dim3 grid(blocksX, blocksY);
KeMatrixRowOp<Agg, 128><<< grid, threads, 0, STREAM_DEFAULT >>> KeMatrixRowOp<Agg, 128><<<grid, threads, 0, STREAM_DEFAULT>>>(
(agg, A_d, C_d, dimN); agg, A_d, C_d, dimN);
} }
void hl_matrix_row_sum(real *A_d, real *C_d, int dimM, int dimN) { void hl_matrix_row_sum(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d); CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d); CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::sum(), hl_matrix_row_op(aggregate::sum(), A_d, C_d, dimM, dimN);
A_d,
C_d,
dimM,
dimN);
CHECK_SYNC("hl_matrix_row_sum failed"); CHECK_SYNC("hl_matrix_row_sum failed");
} }
@ -88,11 +76,7 @@ void hl_matrix_row_max(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d); CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d); CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::max(), hl_matrix_row_op(aggregate::max(), A_d, C_d, dimM, dimN);
A_d,
C_d,
dimM,
dimN);
CHECK_SYNC("hl_matrix_row_max failed"); CHECK_SYNC("hl_matrix_row_max failed");
} }
@ -100,11 +84,7 @@ void hl_matrix_row_min(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d); CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d); CHECK_NOTNULL(C_d);
hl_matrix_row_op(aggregate::min(), hl_matrix_row_op(aggregate::min(), A_d, C_d, dimM, dimN);
A_d,
C_d,
dimM,
dimN);
CHECK_SYNC("hl_matrix_row_min failed"); CHECK_SYNC("hl_matrix_row_min failed");
} }
@ -112,11 +92,8 @@ void hl_matrix_row_min(real *A_d, real *C_d, int dimM, int dimN) {
* @brief matrix column operator. * @brief matrix column operator.
*/ */
template <class Agg> template <class Agg>
__global__ void KeMatrixColumnOp(Agg agg, __global__ void KeMatrixColumnOp(
real *E, Agg agg, real *E, real *Sum, int dimM, int dimN) {
real *Sum,
int dimM,
int dimN) {
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x; int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
real tmp = agg.init(); real tmp = agg.init();
if (rowIdx < dimN) { if (rowIdx < dimN) {
@ -128,11 +105,8 @@ __global__ void KeMatrixColumnOp(Agg agg,
} }
template <class Agg, int blockDimX, int blockDimY> template <class Agg, int blockDimX, int blockDimY>
__global__ void KeMatrixColumnOp_S(Agg agg, __global__ void KeMatrixColumnOp_S(
real *E, Agg agg, real *E, real *Sum, int dimM, int dimN) {
real *Sum,
int dimM,
int dimN) {
__shared__ real _sum[blockDimX * blockDimY]; __shared__ real _sum[blockDimX * blockDimY];
int rowIdx = blockIdx.x * blockDim.x + threadIdx.x; int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
int index = threadIdx.y; int index = threadIdx.y;
@ -159,25 +133,21 @@ __global__ void KeMatrixColumnOp_S(Agg agg,
} }
template <class Agg> template <class Agg>
void hl_matrix_column_op(Agg agg, void hl_matrix_column_op(Agg agg, real *A_d, real *C_d, int dimM, int dimN) {
real *A_d,
real *C_d,
int dimM,
int dimN) {
if (dimN >= 8192) { if (dimN >= 8192) {
int blocksX = (dimN + 128 - 1) / 128; int blocksX = (dimN + 128 - 1) / 128;
int blocksY = 1; int blocksY = 1;
dim3 threads(128, 1); dim3 threads(128, 1);
dim3 grid(blocksX, blocksY); dim3 grid(blocksX, blocksY);
KeMatrixColumnOp<Agg><<< grid, threads, 0, STREAM_DEFAULT >>> KeMatrixColumnOp<Agg><<<grid, threads, 0, STREAM_DEFAULT>>>(
(agg, A_d, C_d, dimM, dimN); agg, A_d, C_d, dimM, dimN);
} else { } else {
int blocksX = (dimN + 32 - 1) / 32; int blocksX = (dimN + 32 - 1) / 32;
int blocksY = 1; int blocksY = 1;
dim3 threads(32, 32); dim3 threads(32, 32);
dim3 grid(blocksX, blocksY); dim3 grid(blocksX, blocksY);
KeMatrixColumnOp_S<Agg, 32, 32><<< grid, threads, 0, STREAM_DEFAULT>>> KeMatrixColumnOp_S<Agg, 32, 32><<<grid, threads, 0, STREAM_DEFAULT>>>(
(agg, A_d, C_d, dimM, dimN); agg, A_d, C_d, dimM, dimN);
} }
return; return;
@ -187,11 +157,7 @@ void hl_matrix_column_sum(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d); CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d); CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::sum(), hl_matrix_column_op(aggregate::sum(), A_d, C_d, dimM, dimN);
A_d,
C_d,
dimM,
dimN);
CHECK_SYNC("hl_matrix_column_sum failed"); CHECK_SYNC("hl_matrix_column_sum failed");
} }
@ -200,11 +166,7 @@ void hl_matrix_column_max(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d); CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d); CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::max(), hl_matrix_column_op(aggregate::max(), A_d, C_d, dimM, dimN);
A_d,
C_d,
dimM,
dimN);
CHECK_SYNC("hl_matrix_column_max failed"); CHECK_SYNC("hl_matrix_column_max failed");
} }
@ -213,11 +175,7 @@ void hl_matrix_column_min(real *A_d, real *C_d, int dimM, int dimN) {
CHECK_NOTNULL(A_d); CHECK_NOTNULL(A_d);
CHECK_NOTNULL(C_d); CHECK_NOTNULL(C_d);
hl_matrix_column_op(aggregate::min(), hl_matrix_column_op(aggregate::min(), A_d, C_d, dimM, dimN);
A_d,
C_d,
dimM,
dimN);
CHECK_SYNC("hl_matrix_column_min failed"); CHECK_SYNC("hl_matrix_column_min failed");
} }
@ -261,20 +219,21 @@ void hl_vector_sum(real *A_d, real *C_h, int dimM) {
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event}; struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
hl_event_t hl_event = &hl_event_st; hl_event_t hl_event = &hl_event_st;
while (!hl_cuda_event_is_ready(hl_event)) {} while (!hl_cuda_event_is_ready(hl_event)) {
}
KeVectorSum<128><<< grid, threads, 0, STREAM_DEFAULT >>> KeVectorSum<128><<<grid, threads, 0, STREAM_DEFAULT>>>(
(A_d, t_resource.gpu_mem, dimM); A_d, t_resource.gpu_mem, dimM);
KeVectorSum<128><<< 1, threads, 0, STREAM_DEFAULT >>> KeVectorSum<128><<<1, threads, 0, STREAM_DEFAULT>>>(
(t_resource.gpu_mem, t_resource.cpu_mem, 128); t_resource.gpu_mem, t_resource.cpu_mem, 128);
hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT); hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event); hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);
hl_stream_synchronize(HPPL_STREAM_DEFAULT); hl_stream_synchronize(HPPL_STREAM_DEFAULT);
cudaError_t err = (cudaError_t)hl_get_device_last_error(); cudaError_t err = (cudaError_t)hl_get_device_last_error();
CHECK_EQ(cudaSuccess, err) CHECK_EQ(cudaSuccess, err) << "CUDA error: "
<< "CUDA error: " << hl_get_device_error_string((size_t)err); << hl_get_device_error_string((size_t)err);
} }
template <int blockSize> template <int blockSize>
@ -316,18 +275,19 @@ void hl_vector_abs_sum(real *A_d, real *C_h, int dimM) {
struct _hl_event_st hl_event_st = {.cu_event = t_resource.event}; struct _hl_event_st hl_event_st = {.cu_event = t_resource.event};
hl_event_t hl_event = &hl_event_st; hl_event_t hl_event = &hl_event_st;
while (!hl_cuda_event_is_ready(hl_event)) {} while (!hl_cuda_event_is_ready(hl_event)) {
}
KeVectorAbsSum<128><<< grid, threads, 0, STREAM_DEFAULT >>> KeVectorAbsSum<128><<<grid, threads, 0, STREAM_DEFAULT>>>(
(A_d, t_resource.gpu_mem, dimM); A_d, t_resource.gpu_mem, dimM);
KeVectorAbsSum<128><<< 1, threads, 0, STREAM_DEFAULT >>> KeVectorAbsSum<128><<<1, threads, 0, STREAM_DEFAULT>>>(
(t_resource.gpu_mem, t_resource.cpu_mem, 128); t_resource.gpu_mem, t_resource.cpu_mem, 128);
hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT); hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event); hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);
hl_stream_synchronize(HPPL_STREAM_DEFAULT); hl_stream_synchronize(HPPL_STREAM_DEFAULT);
cudaError_t err = (cudaError_t)hl_get_device_last_error(); cudaError_t err = (cudaError_t)hl_get_device_last_error();
CHECK_EQ(cudaSuccess, err) CHECK_EQ(cudaSuccess, err) << "CUDA error: "
<< "CUDA error: " << hl_get_device_error_string((size_t)err); << hl_get_device_error_string((size_t)err);
} }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -55,16 +55,13 @@ void hl_max_sequence_forward(real* input,
dim3 threads(256, 1); dim3 threads(256, 1);
dim3 grid(numSequences, 1); dim3 grid(numSequences, 1);
KeMaxSequenceForward<<< grid, threads, 0, STREAM_DEFAULT >>> KeMaxSequenceForward<<<grid, threads, 0, STREAM_DEFAULT>>>(
(input, sequence, output, index, numSequences, dim); input, sequence, output, index, numSequences, dim);
CHECK_SYNC("hl_max_sequence_forward failed"); CHECK_SYNC("hl_max_sequence_forward failed");
} }
__global__ void KeMaxSequenceBackward(real *outputGrad, __global__ void KeMaxSequenceBackward(
int *index, real* outputGrad, int* index, real* inputGrad, int numSequences, int dim) {
real* inputGrad,
int numSequences,
int dim) {
int idx = threadIdx.x + blockIdx.x * blockDim.x; int idx = threadIdx.x + blockIdx.x * blockDim.x;
int colIdx = idx % dim; int colIdx = idx % dim;
if (idx < numSequences * dim) { if (idx < numSequences * dim) {
@ -73,11 +70,8 @@ __global__ void KeMaxSequenceBackward(real *outputGrad,
} }
} }
void hl_max_sequence_backward(real* outputGrad, void hl_max_sequence_backward(
int *index, real* outputGrad, int* index, real* inputGrad, int numSequences, int dim) {
real* inputGrad,
int numSequences,
int dim) {
CHECK_NOTNULL(outputGrad); CHECK_NOTNULL(outputGrad);
CHECK_NOTNULL(index); CHECK_NOTNULL(index);
CHECK_NOTNULL(inputGrad); CHECK_NOTNULL(inputGrad);
@ -85,8 +79,8 @@ void hl_max_sequence_backward(real* outputGrad,
unsigned int blocks = (numSequences * dim + 128 - 1) / 128; unsigned int blocks = (numSequences * dim + 128 - 1) / 128;
dim3 threads(128, 1); dim3 threads(128, 1);
dim3 grid(blocks, 1); dim3 grid(blocks, 1);
KeMaxSequenceBackward<<< grid, threads, 0, STREAM_DEFAULT >>> KeMaxSequenceBackward<<<grid, threads, 0, STREAM_DEFAULT>>>(
(outputGrad, index, inputGrad, numSequences, dim); outputGrad, index, inputGrad, numSequences, dim);
CHECK_SYNC("hl_max_sequence_backward failed"); CHECK_SYNC("hl_max_sequence_backward failed");
} }
@ -118,9 +112,12 @@ __global__ void KeMatrixAddRows(real* output,
} }
} }
template<int blockDimX, int blockDimY, int gridDimX, bool seq2batch, bool isAdd> template <int blockDimX,
__global__ int blockDimY,
void KeSequence2Batch(real *batch, int gridDimX,
bool seq2batch,
bool isAdd>
__global__ void KeSequence2Batch(real* batch,
real* sequence, real* sequence,
const int* batchIndex, const int* batchIndex,
int seqWidth, int seqWidth,
@ -164,11 +161,11 @@ void hl_sequence2batch_copy(real *batch,
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grid(8, 1); dim3 grid(8, 1);
if (seq2batch) { if (seq2batch) {
KeSequence2Batch<128, 8, 8, 1, 0><<< grid, threads, 0, STREAM_DEFAULT >>> KeSequence2Batch<128, 8, 8, 1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
(batch, sequence, batchIndex, seqWidth, batchCount); batch, sequence, batchIndex, seqWidth, batchCount);
} else { } else {
KeSequence2Batch<128, 8, 8, 0, 0><<< grid, threads, 0, STREAM_DEFAULT >>> KeSequence2Batch<128, 8, 8, 0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
(batch, sequence, batchIndex, seqWidth, batchCount); batch, sequence, batchIndex, seqWidth, batchCount);
} }
CHECK_SYNC("hl_sequence2batch_copy failed"); CHECK_SYNC("hl_sequence2batch_copy failed");
} }
@ -186,18 +183,17 @@ void hl_sequence2batch_add(real *batch,
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grid(8, 1); dim3 grid(8, 1);
if (seq2batch) { if (seq2batch) {
KeSequence2Batch<128, 8, 8, 1, 1><<< grid, threads, 0, STREAM_DEFAULT >>> KeSequence2Batch<128, 8, 8, 1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
(batch, sequence, batchIndex, seqWidth, batchCount); batch, sequence, batchIndex, seqWidth, batchCount);
} else { } else {
KeSequence2Batch<128, 8, 8, 0, 1><<< grid, threads, 0, STREAM_DEFAULT >>> KeSequence2Batch<128, 8, 8, 0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
(batch, sequence, batchIndex, seqWidth, batchCount); batch, sequence, batchIndex, seqWidth, batchCount);
} }
CHECK_SYNC("hl_sequence2batch_add failed"); CHECK_SYNC("hl_sequence2batch_add failed");
} }
template <bool normByTimes, bool seq2batch> template <bool normByTimes, bool seq2batch>
__global__ __global__ void KeSequence2BatchPadding(real* batch,
void KeSequence2BatchPadding(real* batch,
real* sequence, real* sequence,
const int* sequenceStartPositions, const int* sequenceStartPositions,
const size_t sequenceWidth, const size_t sequenceWidth,
@ -277,36 +273,48 @@ void hl_sequence2batch_copy_padding(real* batch,
/* sequence -> batch */ /* sequence -> batch */
if (normByTimes) { if (normByTimes) {
KeSequence2BatchPadding<1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>( KeSequence2BatchPadding<1, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, sequenceStartPositions, batch,
sequenceWidth, maxSequenceLength, numSequences); sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} else { } else {
KeSequence2BatchPadding<0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>( KeSequence2BatchPadding<0, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, sequenceStartPositions, batch,
sequenceWidth, maxSequenceLength, numSequences); sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} }
} else { } else {
/* batch -> sequence */ /* batch -> sequence */
if (normByTimes) { if (normByTimes) {
KeSequence2BatchPadding<1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>( KeSequence2BatchPadding<1, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, sequenceStartPositions, batch,
sequenceWidth, maxSequenceLength, numSequences); sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} else { } else {
KeSequence2BatchPadding<0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>( KeSequence2BatchPadding<0, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
batch, sequence, sequenceStartPositions, batch,
sequenceWidth, maxSequenceLength, numSequences); sequence,
sequenceStartPositions,
sequenceWidth,
maxSequenceLength,
numSequences);
} }
} }
CHECK_SYNC("hl_sequence2batch_copy_padding failed"); CHECK_SYNC("hl_sequence2batch_copy_padding failed");
} }
__device__ inline float my_rsqrt(float x) { __device__ inline float my_rsqrt(float x) { return rsqrtf(x); }
return rsqrtf(x);
}
__device__ inline double my_rsqrt(double x) { __device__ inline double my_rsqrt(double x) { return rsqrt(x); }
return rsqrt(x);
}
__global__ void KeSequenceAvgForward(real* dst, __global__ void KeSequenceAvgForward(real* dst,
real* src, real* src,
@ -327,8 +335,8 @@ __global__ void KeSequenceAvgForward(real* dst,
for (int i = start; i < end; i++) { for (int i = start; i < end; i++) {
sum += src[i * width + col]; sum += src[i * width + col];
} }
sum = mode == 1 ? sum : sum = mode == 1 ? sum : (mode == 0 ? sum / seqLength
(mode == 0 ? sum / seqLength : sum * my_rsqrt((real)seqLength)); : sum * my_rsqrt((real)seqLength));
dst[gid] += sum; dst[gid] += sum;
} }
} }
@ -349,8 +357,8 @@ void hl_sequence_avg_forward(real* dst,
CHECK(mode == 0 || mode == 1 || mode == 2) CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_forward!"; << "mode error in hl_sequence_avg_forward!";
KeSequenceAvgForward<<< grid, block, 0, STREAM_DEFAULT >>> KeSequenceAvgForward<<<grid, block, 0, STREAM_DEFAULT>>>(
(dst, src, starts, height, width, mode); dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_forward failed"); CHECK_SYNC("hl_sequence_avg_forward failed");
} }
@ -370,8 +378,8 @@ __global__ void KeSequenceAvgBackward(real* dst,
int seqLength = end - start; int seqLength = end - start;
if (seqLength == 0) return; if (seqLength == 0) return;
real grad = src[gid]; real grad = src[gid];
grad = mode == 1 ? grad : grad = mode == 1 ? grad : (mode == 0 ? grad / seqLength
(mode == 0 ? grad / seqLength : grad * my_rsqrt((real)seqLength)); : grad * my_rsqrt((real)seqLength));
for (int i = start; i < end; i++) { for (int i = start; i < end; i++) {
dst[i * width + col] += grad; dst[i * width + col] += grad;
} }
@ -394,7 +402,7 @@ void hl_sequence_avg_backward(real* dst,
CHECK(mode == 0 || mode == 1 || mode == 2) CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_backward!"; << "mode error in hl_sequence_avg_backward!";
KeSequenceAvgBackward<<< grid, block, 0, STREAM_DEFAULT >>> KeSequenceAvgBackward<<<grid, block, 0, STREAM_DEFAULT>>>(
(dst, src, starts, height, width, mode); dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_backward failed"); CHECK_SYNC("hl_sequence_avg_backward failed");
} }

File diff suppressed because it is too large Load Diff

@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <cmath>
#include <stdlib.h> #include <stdlib.h>
#include "hl_cuda.h" #include <cmath>
#include "hl_time.h"
#include "hl_base.h" #include "hl_base.h"
#include "hl_cuda.h"
#include "hl_perturbation_util.cuh" #include "hl_perturbation_util.cuh"
#include "hl_time.h"
#define _USE_MATH_DEFINES #define _USE_MATH_DEFINES
@ -30,10 +29,16 @@ limitations under the License. */
* centerX, centerY: translation. * centerX, centerY: translation.
* sourceX, sourceY: output coordinates in the original image. * sourceX, sourceY: output coordinates in the original image.
*/ */
__device__ void getTranformCoord(int x, int y, real theta, real scale, __device__ void getTranformCoord(int x,
real tgtCenter, real imgCenter, int y,
real centerR, real centerC, real theta,
int* sourceX, int* sourceY) { real scale,
real tgtCenter,
real imgCenter,
real centerR,
real centerC,
int* sourceX,
int* sourceY) {
real H[4] = {cosf(-theta), -sinf(-theta), sinf(-theta), cosf(-theta)}; real H[4] = {cosf(-theta), -sinf(-theta), sinf(-theta), cosf(-theta)};
// compute coornidates in the rotated and scaled image // compute coornidates in the rotated and scaled image
@ -57,11 +62,17 @@ __device__ void getTranformCoord(int x, int y, real theta, real scale,
* created by Wei Xu (genome), converted by Jiang Wang * created by Wei Xu (genome), converted by Jiang Wang
*/ */
__global__ void kSamplingPatches(const real* imgs, real* targets, __global__ void kSamplingPatches(const real* imgs,
int imgSize, int tgtSize, const int channels, real* targets,
int samplingRate, const real* thetas, int imgSize,
const real* scales, const int* centerRs, int tgtSize,
const int* centerCs, const real padValue, const int channels,
int samplingRate,
const real* thetas,
const real* scales,
const int* centerRs,
const int* centerCs,
const real padValue,
const int numImages) { const int numImages) {
const int caseIdx = blockIdx.x * 4 + threadIdx.x; const int caseIdx = blockIdx.x * 4 + threadIdx.x;
const int pxIdx = blockIdx.y * 128 + threadIdx.y; const int pxIdx = blockIdx.y * 128 + threadIdx.y;
@ -80,8 +91,15 @@ __global__ void kSamplingPatches(const real* imgs, real* targets,
const int pxY = pxIdx / tgtSize; const int pxY = pxIdx / tgtSize;
int srcPxX, srcPxY; int srcPxX, srcPxY;
getTranformCoord(pxX, pxY, thetas[imgIdx], scales[imgIdx], tgtCenter, getTranformCoord(pxX,
imgCenter, centerCs[caseIdx], centerRs[caseIdx], &srcPxX, pxY,
thetas[imgIdx],
scales[imgIdx],
tgtCenter,
imgCenter,
centerCs[caseIdx],
centerRs[caseIdx],
&srcPxX,
&srcPxY); &srcPxY);
imgs += (imgIdx * imgPixels + srcPxY * imgSize + srcPxX) * channels; imgs += (imgIdx * imgPixels + srcPxY * imgSize + srcPxX) * channels;
@ -100,10 +118,15 @@ __global__ void kSamplingPatches(const real* imgs, real* targets,
* *
* created by Wei Xu * created by Wei Xu
*/ */
void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio, void hl_generate_disturb_params(real*& gpuAngle,
int*& gpuCenterR, int*& gpuCenterC, real*& gpuScaleRatio,
int numImages, int imgSize, real rotateAngle, int*& gpuCenterR,
real scaleRatio, int samplingRate, int*& gpuCenterC,
int numImages,
int imgSize,
real rotateAngle,
real scaleRatio,
int samplingRate,
bool isTrain) { bool isTrain) {
// The number of output samples. // The number of output samples.
int numPatches = numImages * samplingRate; int numPatches = numImages * samplingRate;
@ -123,7 +146,8 @@ void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
for (int i = 0; i < numImages; i++) { for (int i = 0; i < numImages; i++) {
r_angle[i] = r_angle[i] =
(rotateAngle * M_PI / 180.0) * (rand() / (RAND_MAX + 1.0) // NOLINT (rotateAngle * M_PI / 180.0) * (rand() / (RAND_MAX + 1.0) // NOLINT
- 0.5); -
0.5);
s_ratio[i] = s_ratio[i] =
1 + (rand() / (RAND_MAX + 1.0) - 0.5) * scaleRatio; // NOLINT 1 + (rand() / (RAND_MAX + 1.0) - 0.5) * scaleRatio; // NOLINT
} }
@ -140,8 +164,10 @@ void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
int pxY = int pxY =
(int)(real(imgSize - 1) * rand() / (RAND_MAX + 1.0)); // NOLINT (int)(real(imgSize - 1) * rand() / (RAND_MAX + 1.0)); // NOLINT
const real H[4] = {cos(-r_angle[i]), -sin(-r_angle[i]), const real H[4] = {cos(-r_angle[i]),
sin(-r_angle[i]), cos(-r_angle[i])}; -sin(-r_angle[i]),
sin(-r_angle[i]),
cos(-r_angle[i])};
real x = pxX - imgCenter; real x = pxX - imgCenter;
real y = pxY - imgCenter; real y = pxY - imgCenter;
real xx = H[0] * x + H[1] * y; real xx = H[0] * x + H[1] * y;
@ -185,9 +211,12 @@ void hl_generate_disturb_params(real*& gpuAngle, real*& gpuScaleRatio,
delete[] center_c; delete[] center_c;
} }
void hl_conv_random_disturb_with_params(const real* images, int imgSize, void hl_conv_random_disturb_with_params(const real* images,
int tgtSize, int channels, int imgSize,
int numImages, int samplingRate, int tgtSize,
int channels,
int numImages,
int samplingRate,
const real* gpuRotationAngle, const real* gpuRotationAngle,
const real* gpuScaleRatio, const real* gpuScaleRatio,
const int* gpuCenterR, const int* gpuCenterR,
@ -202,29 +231,59 @@ void hl_conv_random_disturb_with_params(const real* images, int imgSize,
dim3 threadsPerBlock(4, 128); dim3 threadsPerBlock(4, 128);
dim3 numBlocks(DIVUP(numPatches, 4), DIVUP(targetSize, 128)); dim3 numBlocks(DIVUP(numPatches, 4), DIVUP(targetSize, 128));
kSamplingPatches <<<numBlocks, threadsPerBlock>>> kSamplingPatches<<<numBlocks, threadsPerBlock>>>(images,
(images, target, imgSize, tgtSize, channels, samplingRate, target,
gpuRotationAngle, gpuScaleRatio, gpuCenterR, gpuCenterC, imgSize,
paddingValue, numImages); tgtSize,
channels,
samplingRate,
gpuRotationAngle,
gpuScaleRatio,
gpuCenterR,
gpuCenterC,
paddingValue,
numImages);
hl_device_synchronize(); hl_device_synchronize();
} }
void hl_conv_random_disturb(const real* images, int imgSize, void hl_conv_random_disturb(const real* images,
int tgtSize, int channels, int numImages, int imgSize,
real scaleRatio, real rotateAngle, int tgtSize,
int samplingRate, real* gpu_r_angle, int channels,
real* gpu_s_ratio, int* gpu_center_r, int numImages,
int* gpu_center_c, int paddingValue, real scaleRatio,
bool isTrain, real* targets) { real rotateAngle,
int samplingRate,
real* gpu_r_angle,
real* gpu_s_ratio,
int* gpu_center_r,
int* gpu_center_c,
int paddingValue,
bool isTrain,
real* targets) {
// generate the random disturbance sequence and the sampling locations // generate the random disturbance sequence and the sampling locations
hl_generate_disturb_params(gpu_r_angle, gpu_s_ratio, gpu_center_r, hl_generate_disturb_params(gpu_r_angle,
gpu_center_c, numImages, imgSize, rotateAngle, gpu_s_ratio,
scaleRatio, samplingRate, isTrain); gpu_center_r,
gpu_center_c,
hl_conv_random_disturb_with_params( numImages,
images, imgSize, tgtSize, channels, numImages, imgSize,
samplingRate, gpu_r_angle, gpu_s_ratio, rotateAngle,
gpu_center_r, gpu_center_r, paddingValue, scaleRatio,
samplingRate,
isTrain);
hl_conv_random_disturb_with_params(images,
imgSize,
tgtSize,
channels,
numImages,
samplingRate,
gpu_r_angle,
gpu_s_ratio,
gpu_center_r,
gpu_center_r,
paddingValue,
targets); targets);
} }

@ -12,15 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "hl_base.h" #include "hl_base.h"
#include "hl_device_functions.cuh"
#include "hl_cuda.h" #include "hl_cuda.h"
#include "hl_device_functions.cuh"
#include "paddle/utils/Logging.h" #include "paddle/utils/Logging.h"
template <int blockDimX, int blockDimY, int gridDimX, bool AddRow> template <int blockDimX, int blockDimY, int gridDimX, bool AddRow>
__global__ void KeMatrixAddRows(real* output, int ldo, __global__ void KeMatrixAddRows(real* output,
real* table, int ldt, int ldo,
real* table,
int ldt,
int* ids, int* ids,
int numSamples, int numSamples,
int tableSize, int tableSize,
@ -45,8 +46,10 @@ __global__ void KeMatrixAddRows(real* output, int ldo,
} }
} }
void hl_matrix_select_rows(real* output, int ldo, void hl_matrix_select_rows(real* output,
real* table, int ldt, int ldo,
real* table,
int ldt,
int* ids, int* ids,
int numSamples, int numSamples,
int tableSize, int tableSize,
@ -57,14 +60,16 @@ void hl_matrix_select_rows(real* output, int ldo,
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grid(8, 1); dim3 grid(8, 1);
KeMatrixAddRows<128, 8, 8, 0><<< grid, threads, 0, STREAM_DEFAULT >>> KeMatrixAddRows<128, 8, 8, 0><<<grid, threads, 0, STREAM_DEFAULT>>>(
(output, ldo, table, ldt, ids, numSamples, tableSize, dim); output, ldo, table, ldt, ids, numSamples, tableSize, dim);
CHECK_SYNC("hl_matrix_select_rows failed"); CHECK_SYNC("hl_matrix_select_rows failed");
} }
void hl_matrix_add_to_rows(real* table, int ldt, void hl_matrix_add_to_rows(real* table,
real* input, int ldi, int ldt,
real* input,
int ldi,
int* ids, int* ids,
int numSamples, int numSamples,
int tableSize, int tableSize,
@ -75,16 +80,15 @@ void hl_matrix_add_to_rows(real* table, int ldt,
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grid(8, 1); dim3 grid(8, 1);
KeMatrixAddRows<128, 8, 8, 1><<< grid, threads, 0, STREAM_DEFAULT >>> KeMatrixAddRows<128, 8, 8, 1><<<grid, threads, 0, STREAM_DEFAULT>>>(
(input, ldi, table, ldt, ids, numSamples, tableSize, dim); input, ldi, table, ldt, ids, numSamples, tableSize, dim);
CHECK_SYNC("hl_matrix_add_to_rows failed"); CHECK_SYNC("hl_matrix_add_to_rows failed");
} }
template <class T, int blockDimX, int gridDimX> template <class T, int blockDimX, int gridDimX>
__global__ void KeVectorSelect(T* dst, int sized, __global__ void KeVectorSelect(
const T* src, int sizes, T* dst, int sized, const T* src, int sizes, const int* ids, int sizei) {
const int* ids, int sizei) {
int idx = threadIdx.x + blockDimX * blockIdx.x; int idx = threadIdx.x + blockDimX * blockIdx.x;
while (idx < sizei) { while (idx < sizei) {
int index = ids[idx]; int index = ids[idx];
@ -95,9 +99,8 @@ __global__ void KeVectorSelect(T* dst, int sized,
} }
template <class T> template <class T>
void hl_vector_select_from(T* dst, int sized, void hl_vector_select_from(
const T* src, int sizes, T* dst, int sized, const T* src, int sizes, const int* ids, int sizei) {
const int* ids, int sizei) {
CHECK_NOTNULL(dst); CHECK_NOTNULL(dst);
CHECK_NOTNULL(src); CHECK_NOTNULL(src);
CHECK_NOTNULL(ids); CHECK_NOTNULL(ids);
@ -105,18 +108,17 @@ void hl_vector_select_from(T* dst, int sized,
dim3 threads(512, 1); dim3 threads(512, 1);
dim3 grid(8, 1); dim3 grid(8, 1);
KeVectorSelect<T, 512, 8><<< grid, threads, 0, STREAM_DEFAULT >>> KeVectorSelect<T, 512, 8><<<grid, threads, 0, STREAM_DEFAULT>>>(
(dst, sized, src, sizes, ids, sizei); dst, sized, src, sizes, ids, sizei);
CHECK_SYNC("hl_vector_select_from failed"); CHECK_SYNC("hl_vector_select_from failed");
} }
template template void hl_vector_select_from(real* dst,
void hl_vector_select_from(real* dst, int sized, int sized,
const real* src, int sizes, const real* src,
const int* ids, int sizei); int sizes,
template const int* ids,
void hl_vector_select_from(int* dst, int sized, int sizei);
const int* src, int sizes, template void hl_vector_select_from(
const int* ids, int sizei); int* dst, int sized, const int* src, int sizes, const int* ids, int sizei);

File diff suppressed because it is too large Load Diff

@ -12,13 +12,15 @@ cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc) cc_library(scope SRCS scope.cc)
cc_test(scope_test SRCS scope_test.cc DEPS scope) cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(attr_type SRCS attr_type.proto) proto_library(attribute_proto SRCS attribute.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attr_type) proto_library(op_proto SRCS op_proto.proto DEPS attribute_proto)
proto_library(op_desc SRCS op_desc.proto DEPS attr_type) proto_library(op_desc SRCS op_desc.proto DEPS attribute_proto)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf) cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf) cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope) cc_library(attribute SRCS attribute.cc DEPS op_desc op_proto)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope attribute)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator)
@ -26,13 +28,19 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_desc grad_op_builder)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)
py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto) py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module. # Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
cc_library(net SRCS net.cc DEPS op_registry) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
cc_library(backward SRCS backward.cc DEPS net)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
fc_op
sgd_op
add_op
mean_op
cross_entropy_op
recurrent_op)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save