parent
c73f00fe35
commit
9f731a608b
@ -0,0 +1,161 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from ..framework import Variable, unique_name
|
||||||
|
from ..registry import OpProtoHolder
|
||||||
|
|
||||||
|
__all__ = ['monkey_patch_variable']
|
||||||
|
|
||||||
|
|
||||||
|
def monkey_patch_variable():
|
||||||
|
def new_name():
|
||||||
|
return unique_name("tmp")
|
||||||
|
|
||||||
|
def safe_get_dtype(var):
|
||||||
|
try:
|
||||||
|
dtype = var.dtype
|
||||||
|
except:
|
||||||
|
raise ValueError("Cannot get data type from %s", var.name)
|
||||||
|
return dtype
|
||||||
|
|
||||||
|
def create_scalar(block, value, dtype):
|
||||||
|
value = float(value)
|
||||||
|
tmp_name = new_name()
|
||||||
|
var = block.create_var(name=tmp_name, shape=[1], dtype=dtype)
|
||||||
|
block.append_op(
|
||||||
|
type="fill",
|
||||||
|
outputs={"Out": [var]},
|
||||||
|
attrs={"value": [value],
|
||||||
|
"shape": [1],
|
||||||
|
"dtype": dtype})
|
||||||
|
return var
|
||||||
|
|
||||||
|
def create_tensor(block, value, dtype, shape):
|
||||||
|
value = float(value)
|
||||||
|
tmp_name = new_name()
|
||||||
|
var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
|
||||||
|
block.append_op(
|
||||||
|
type="fill_constant",
|
||||||
|
outputs={'Out': [var]},
|
||||||
|
attrs={'dtype': var.dtype,
|
||||||
|
'shape': shape,
|
||||||
|
'value': value})
|
||||||
|
return var
|
||||||
|
|
||||||
|
def create_tensor_with_batchsize(ref_var, value, dtype):
|
||||||
|
assert isinstance(ref_var, Variable)
|
||||||
|
value = float(value)
|
||||||
|
tmp_name = new_name()
|
||||||
|
var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
|
||||||
|
ref_var.block.append_op(
|
||||||
|
type='fill_constant_batch_size_like',
|
||||||
|
outputs={'Out': [var]},
|
||||||
|
inputs={'Input': [ref_var]},
|
||||||
|
attrs={'shape': ref_var.shape,
|
||||||
|
'value': value})
|
||||||
|
return var
|
||||||
|
|
||||||
|
def astype(self, dtype):
|
||||||
|
"""
|
||||||
|
Cast a variable to data type.
|
||||||
|
NOTE: The variable must be a Tensor
|
||||||
|
Args:
|
||||||
|
self(Variable): The source variable
|
||||||
|
dtype: The target dtype
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Variable with new dtype
|
||||||
|
"""
|
||||||
|
tmp_name = new_name()
|
||||||
|
out = self.block.create_var(name=tmp_name, dtype=dtype)
|
||||||
|
self.block.append_op(
|
||||||
|
type="cast",
|
||||||
|
inputs={"X": [self]},
|
||||||
|
outputs={"Out": [out]},
|
||||||
|
attrs={"in_dtype": self.dtype,
|
||||||
|
"out_dtype": out.dtype})
|
||||||
|
return out
|
||||||
|
|
||||||
|
def _elemwise_method_creator_(method_name, op_type, reverse=False):
|
||||||
|
def __impl__(self, other_var):
|
||||||
|
lhs_dtype = safe_get_dtype(self)
|
||||||
|
|
||||||
|
if not isinstance(other_var, Variable):
|
||||||
|
if reverse:
|
||||||
|
has_batch_size = False
|
||||||
|
for elem in self.shape:
|
||||||
|
if elem < 0:
|
||||||
|
has_batch_size = True
|
||||||
|
break
|
||||||
|
if not has_batch_size:
|
||||||
|
other_var = create_tensor(
|
||||||
|
self.block,
|
||||||
|
other_var,
|
||||||
|
dtype=lhs_dtype,
|
||||||
|
shape=self.shape)
|
||||||
|
else:
|
||||||
|
other_var = create_tensor_with_batchsize(
|
||||||
|
self, other_var, lhs_dtype)
|
||||||
|
else:
|
||||||
|
# add fill_op to self.block
|
||||||
|
other_var = create_scalar(
|
||||||
|
self.block, value=other_var, dtype=lhs_dtype)
|
||||||
|
|
||||||
|
rhs_dtype = safe_get_dtype(other_var)
|
||||||
|
if lhs_dtype != rhs_dtype:
|
||||||
|
other_var = astype(other_var, lhs_dtype)
|
||||||
|
if reverse:
|
||||||
|
tmp = self
|
||||||
|
self = other_var
|
||||||
|
other_var = tmp
|
||||||
|
|
||||||
|
tmp_name = new_name()
|
||||||
|
out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
|
||||||
|
self.block.append_op(
|
||||||
|
type=op_type,
|
||||||
|
inputs={'X': [self],
|
||||||
|
'Y': [other_var]},
|
||||||
|
outputs={'Out': out})
|
||||||
|
return out
|
||||||
|
|
||||||
|
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
|
||||||
|
|
||||||
|
__impl__.__doc__ = """
|
||||||
|
{0}
|
||||||
|
Args:
|
||||||
|
self(Variable): left hand variable
|
||||||
|
other_var(Variable|float|int): right hand variable
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Variable
|
||||||
|
""".format(comment)
|
||||||
|
__impl__.__name__ = method_name
|
||||||
|
return __impl__
|
||||||
|
|
||||||
|
# inject methods
|
||||||
|
for method_name, op_type, reverse in (
|
||||||
|
("__add__", "elementwise_add", False),
|
||||||
|
# a+b == b+a. Do not need to reverse explicitly
|
||||||
|
("__radd__", "elementwise_add", False),
|
||||||
|
("__sub__", "elementwise_sub", False),
|
||||||
|
("__rsub__", "elementwise_sub", True),
|
||||||
|
("__mul__", "elementwise_mul", False),
|
||||||
|
# a*b == b*a. Do not need to reverse explicitly
|
||||||
|
("__rmul__", "elementwise_mul", False),
|
||||||
|
("__div__", "elementwise_div", False),
|
||||||
|
("__rdiv__", "elementwise_div", True)):
|
||||||
|
setattr(Variable, method_name,
|
||||||
|
_elemwise_method_creator_(method_name, op_type, reverse))
|
||||||
|
|
||||||
|
Variable.astype = astype
|
@ -0,0 +1,181 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import decorators
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
class TestMathOpPatches(unittest.TestCase):
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_add_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = a + 10
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(a_np + 10, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_radd_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = 10 + a
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(a_np + 10, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_sub_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = a - 10
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(a_np - 10, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_radd_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = 10 - a
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(10 - a_np, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_mul_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = a * 10
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(a_np * 10, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_rmul_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = 10 * a
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(10 * a_np, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_div_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = a / 10
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(a_np / 10, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_rdiv_scalar(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = 10 / a
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
|
||||||
|
|
||||||
|
b_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np},
|
||||||
|
fetch_list=[b])
|
||||||
|
self.assertTrue(numpy.allclose(10 / a_np, b_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_div_two_tensor(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = fluid.layers.data(name="b", shape=[1])
|
||||||
|
c = a / b
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
|
||||||
|
c_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np,
|
||||||
|
'b': b_np},
|
||||||
|
fetch_list=[c])
|
||||||
|
self.assertTrue(numpy.allclose(a_np / b_np, c_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_mul_two_tensor(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = fluid.layers.data(name="b", shape=[1])
|
||||||
|
c = a * b
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
c_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np,
|
||||||
|
'b': b_np},
|
||||||
|
fetch_list=[c])
|
||||||
|
self.assertTrue(numpy.allclose(a_np * b_np, c_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_add_two_tensor(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = fluid.layers.data(name="b", shape=[1])
|
||||||
|
c = a + b
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
c_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np,
|
||||||
|
'b': b_np},
|
||||||
|
fetch_list=[c])
|
||||||
|
self.assertTrue(numpy.allclose(a_np + b_np, c_np))
|
||||||
|
|
||||||
|
@decorators.prog_scope()
|
||||||
|
def test_sub_two_tensor(self):
|
||||||
|
a = fluid.layers.data(name="a", shape=[1])
|
||||||
|
b = fluid.layers.data(name="b", shape=[1])
|
||||||
|
c = a - b
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||||
|
c_np = exe.run(fluid.default_main_program(),
|
||||||
|
feed={"a": a_np,
|
||||||
|
'b': b_np},
|
||||||
|
fetch_list=[c])
|
||||||
|
self.assertTrue(numpy.allclose(a_np - b_np, c_np))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue