Merge remote-tracking branch 'upstream/develop' into develop

gangliao-patch-1
gongweibao 8 years ago
commit 9f9058ac49

@ -2,7 +2,6 @@ group: deprecated-2017Q2
language: cpp
cache:
directories:
- $HOME/third_party
- $HOME/.ccache
- $HOME/.cache/pip
sudo: required
@ -10,15 +9,13 @@ dist: trusty
os:
- linux
env:
- JOB=DOCS
- JOB=BUILD_AND_TEST
- JOB=PRE_COMMIT
- JOB=build_doc
- JOB=check_style
addons:
apt:
packages:
- gcc-4.8
- g++-4.8
- gfortran-4.8
- git
- build-essential
- python
@ -35,18 +32,7 @@ addons:
- libtool
- ccache
before_install:
- |
if [ ${JOB} == "BUILD_AND_TEST" ]; then
local change_list=`git diff --name-only $TRAVIS_COMMIT_RANGE`
if [ $? -eq 0 ]; then # if git diff return no zero, then rerun unit test.
if ! echo ${change_list} | grep -qvE '(\.md$)|(\.rst$)|(\.jpg$)|(\.png$)'
then
echo "Only markdown docs were updated, stopping build process."
exit
fi
fi
fi
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker
@ -55,9 +41,7 @@ before_install:
- |
function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; }
script:
- |
timeout 2580 paddle/scripts/travis/main.sh # 43min timeout
RESULT=$?; if [ $RESULT -eq 0 ] || [ $RESULT -eq 142 ]; then true; else false; fi;
- paddle/scripts/travis/$JOB.sh
notifications:
email:
on_success: change

@ -25,7 +25,7 @@ COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y \
git python-pip python-dev openssh-server bison \
wget unzip tar xz-utils bzip2 gzip coreutils \
wget unzip tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-numpy python-matplotlib gcc g++ \
automake locales clang-format-3.8 swig doxygen cmake \

@ -99,3 +99,12 @@ value_printer
.. automodule:: paddle.v2.evaluator
:members: value_printer
:noindex:
Detection
=====
detection_map
-------------
.. automodule:: paddle.v2.evaluator
:members: detection_map
:noindex:

@ -5,18 +5,35 @@ import (
"net/http"
"net/rpc"
"strconv"
"time"
"github.com/namsral/flag"
"github.com/PaddlePaddle/Paddle/go/pserver"
log "github.com/sirupsen/logrus"
)
func main() {
port := flag.Int("port", 0, "port of the pserver")
etcdEndpoint := flag.String("etcd-endpoint", "http://127.0.0.1:2379",
"comma separated endpoint string for pserver to connect to etcd")
etcdTimeout := flag.Int("etcd-timeout", 5, "timeout for etcd calls")
logLevel := flag.String("log-level", "info",
"log level, possible values: debug, info, warning, error, fatal, panic")
flag.Parse()
s := pserver.NewService()
err := rpc.Register(s)
level, err := log.ParseLevel(*logLevel)
if err != nil {
panic(err)
}
log.SetLevel(level)
timeout := time.Second * time.Duration((*etcdTimeout))
s, err := pserver.NewService(*etcdEndpoint, timeout)
if err != nil {
panic(err)
}
err = rpc.Register(s)
if err != nil {
panic(err)
}
@ -27,7 +44,9 @@ func main() {
panic(err)
}
log.Infof("start pserver at port %d", *port)
err = http.Serve(l, nil)
if err != nil {
panic(err)
}

@ -7,6 +7,7 @@ import (
"strconv"
"strings"
"testing"
"time"
"github.com/PaddlePaddle/Paddle/go/pserver"
)
@ -30,9 +31,12 @@ func init() {
port[i] = p
go func(l net.Listener) {
s := pserver.NewService()
s, err := pserver.NewService("", time.Second*5)
if err != nil {
panic(err)
}
server := rpc.NewServer()
err := server.Register(s)
err = server.Register(s)
if err != nil {
panic(err)
}

@ -1,9 +1,18 @@
package pserver
import (
"context"
"errors"
"fmt"
"strconv"
"strings"
"sync"
"time"
"github.com/PaddlePaddle/Paddle/go/utils/networkhelper"
"github.com/coreos/etcd/clientv3"
"github.com/coreos/etcd/clientv3/concurrency"
log "github.com/sirupsen/logrus"
)
// ElementType is the type of elements of a Parameter.
@ -24,6 +33,9 @@ const (
Float64
)
// PsDesired is etcd path for store desired pserver count
const PsDesired = "/ps_desired"
// Parameter is a piece of data to sync with the parameter server.
type Parameter struct {
Name string
@ -47,14 +59,121 @@ type Service struct {
mu sync.Mutex
opt *optimizer
paramMap map[string]Parameter
etcdEndpoints string
etcdClient *clientv3.Client
// etcdTimeout is also used as retry intervals.
etcdTimeout time.Duration
// desired number of pservers in the job.
// assume desired will not change during one training job.
desired int
// FIXME: ensure GetExternalIP gets the correct ip for trainers to connect.
externalIP string
}
// NewService creates a new service.
func NewService() *Service {
// NewService creates a new service, will bypass etcd registration if no
// endpoints specified.
func NewService(endpoints string, timeout time.Duration) (*Service, error) {
s := &Service{opt: newOptimizer(sgd, 0.005)}
s.paramMap = make(map[string]Parameter)
s.initialized = make(chan struct{})
return s
s.etcdEndpoints = endpoints
s.etcdTimeout = timeout
var err error
s.externalIP, err = networkhelper.GetExternalIP()
if err != nil {
return nil, err
}
if endpoints != "" {
// initialize connection to etcd, try
ep := strings.Split(s.etcdEndpoints, ",")
for {
cli, err := clientv3.New(clientv3.Config{
Endpoints: ep,
DialTimeout: s.etcdTimeout,
})
if err != nil {
log.Errorf("connect to etcd error: %v", err)
time.Sleep(s.etcdTimeout)
continue
}
s.etcdClient = cli
log.Debugf("inited client to %s", s.etcdEndpoints)
break
}
// wait and set s.desired init value
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
resp, err := s.etcdClient.Get(ctx, PsDesired)
cancel()
if err != nil {
log.Errorf("getting %s error: %v", PsDesired, err)
time.Sleep(s.etcdTimeout)
continue
}
if len(resp.Kvs) != 0 {
s.desired, err = strconv.Atoi(string(resp.Kvs[0].Value))
if err != nil {
log.Errorf("value of %s invalid %v\n", PsDesired, err)
time.Sleep(s.etcdTimeout)
// NOTE: wait util ps_desired value change
continue
}
break
}
}
// try register pserver node on etcd
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
_, err := s.registerPserverEtcd(ctx)
cancel()
if err != nil {
log.Warn(err)
time.Sleep(s.etcdTimeout)
continue
}
break
}
} // if endpoints != ""
// Bypass etcd registration if no endpoints specified
return s, nil
}
// registerPserverEtcd registers pserver node on etcd using transaction.
func (s *Service) registerPserverEtcd(ctx context.Context) (*clientv3.TxnResponse, error) {
return concurrency.NewSTM(s.etcdClient, func(c concurrency.STM) error {
registered := false
for i := 0; i < s.desired; i++ {
psKey := "/ps/" + strconv.Itoa(i)
log.Debugf("checking %s", psKey)
ps := c.Get(psKey)
log.Debugf("got value (%s) for key: %s", ps, psKey)
if ps == "" {
resp, err := s.etcdClient.Grant(context.TODO(), 5)
if err != nil {
log.Fatal(err)
}
// find the first id and write info
c.Put(psKey, s.externalIP, clientv3.WithLease(resp.ID))
log.Debugf("set pserver node %s with value %s", psKey, s.externalIP)
_, kaerr := s.etcdClient.KeepAlive(context.TODO(), resp.ID)
if kaerr != nil {
log.Errorf("keepalive etcd node error: %v", kaerr)
return kaerr
}
log.Debug("register finished")
registered = true
break
}
}
if registered == true {
return nil
}
return errors.New("not registerd, may due to already have enough pservers")
}, concurrency.WithAbortContext(ctx), concurrency.WithIsolation(concurrency.RepeatableReads))
}
// InitParam initializes a parameter.

@ -10,12 +10,15 @@ import (
)
func TestFull(t *testing.T) {
s := pserver.NewService()
s, err := pserver.NewService("", time.Second*5)
if err != nil {
t.Error(err)
}
var p pserver.Parameter
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err := s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
if err != nil {
t.FailNow()
}
@ -72,8 +75,11 @@ func TestFull(t *testing.T) {
}
func TestMultipleInit(t *testing.T) {
s := pserver.NewService()
err := s.FinishInitParams(0, nil)
s, err := pserver.NewService("", time.Second*5)
if err != nil {
t.Error(err)
}
err = s.FinishInitParams(0, nil)
if err != nil {
t.FailNow()
}
@ -85,15 +91,18 @@ func TestMultipleInit(t *testing.T) {
}
func TestUninitialized(t *testing.T) {
s := pserver.NewService()
err := s.SendGrad(pserver.Gradient{}, nil)
s, err := pserver.NewService("", time.Second*5)
err = s.SendGrad(pserver.Gradient{}, nil)
if err.Error() != pserver.Uninitialized {
t.FailNow()
}
}
func TestBlockUntilInitialized(t *testing.T) {
s := pserver.NewService()
s, err := pserver.NewService("", time.Second*5)
if err != nil {
t.Error(err)
}
ch := make(chan struct{}, 2)
errCh := make(chan error, 2)
var wg sync.WaitGroup
@ -133,7 +142,7 @@ func TestBlockUntilInitialized(t *testing.T) {
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err := s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
if err != nil {
t.FailNow()
}

@ -0,0 +1,45 @@
package networkhelper
import (
"errors"
"net"
)
// GetExternalIP returns the ip address of local network interface, not the
// loopback device.
func GetExternalIP() (string, error) {
ifaces, err := net.Interfaces()
if err != nil {
return "", err
}
for _, iface := range ifaces {
if iface.Flags&net.FlagUp == 0 {
continue // interface down
}
if iface.Flags&net.FlagLoopback != 0 {
continue // loopback interface
}
addrs, err := iface.Addrs()
if err != nil {
return "", err
}
for _, addr := range addrs {
var ip net.IP
switch v := addr.(type) {
case *net.IPNet:
ip = v.IP
case *net.IPAddr:
ip = v.IP
}
if ip == nil || ip.IsLoopback() {
continue
}
ip = ip.To4()
if ip == nil {
continue // not an ipv4 address
}
return ip.String(), nil
}
}
return "", errors.New("are you connected to the network?")
}

@ -0,0 +1,10 @@
package networkhelper
import "testing"
func TestGetIP(t *testing.T) {
_, err := GetExternalIP()
if err != nil {
t.Errorf("GetExternalIP returns error : %v\n", err)
}
}

File diff suppressed because it is too large Load Diff

@ -138,6 +138,23 @@ void testEvaluatorAll(TestConfig testConf,
testEvaluator(testConf, testEvaluatorName, batchSize, false);
}
TEST(Evaluator, detection_map) {
TestConfig config;
config.evaluatorConfig.set_type("detection_map");
config.evaluatorConfig.set_overlap_threshold(0.5);
config.evaluatorConfig.set_background_id(0);
config.evaluatorConfig.set_ap_type("Integral");
config.evaluatorConfig.set_evaluate_difficult(0);
config.inputDefs.push_back({INPUT_DATA, "output", 7});
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "label", 6});
config.evaluatorConfig.set_evaluate_difficult(false);
testEvaluatorAll(config, "detection_map", 100);
config.evaluatorConfig.set_evaluate_difficult(true);
testEvaluatorAll(config, "detection_map", 100);
}
TEST(Evaluator, classification_error) {
TestConfig config;
config.evaluatorConfig.set_type("classification_error");

@ -14,11 +14,13 @@ limitations under the License. */
#include "ParameterUpdaterHook.h"
#include <algorithm>
#include <atomic>
#include <fstream>
#include <mutex>
#include <thread>
#include <unordered_map>
#include <vector>
#include "paddle/math/Vector.h"
#include "paddle/parameter/Parameter.h"
@ -29,106 +31,76 @@ namespace paddle {
/**
* The static pruning hook
*
* Static means user load a mask map before training started. This map will
* define which link/weight between neural is disabled.
* Static means user specify a sparsity_ratio before training started, and the
* network will prune the parameters based on the sparsity_ratio. More details
* can be found https://arxiv.org/pdf/1506.02626.pdf.
*/
class StaticPruningHook : public IParameterUpdaterHook {
public:
/**
* The Mask Map Header.
* The map file started with this header.
*
* In Version 0, reset file will be:
* contains header.size bit, each bit means such weight is enabled or not.
* if bit is 1, then such weight is enabled.
* at end, the file will round to byte, and the low bits of end byte will be
* filled by zero.
*
*/
struct StaticMaskHeader {
uint32_t version;
size_t size;
} __attribute__((__packed__));
explicit StaticPruningHook(const std::string& mask_filename) : initCount_(0) {
bool ok = this->loadMaskFile(mask_filename);
if (!ok) {
LOG(WARNING) << "Fail to load mask file " << mask_filename
<< " in current directory, searching in init_model_path";
std::string combineMaskFilename =
path::join(FLAGS_init_model_path, mask_filename);
CHECK(this->loadMaskFile(combineMaskFilename))
<< "Cannot load " << mask_filename << " in ./" << mask_filename
<< " and " << combineMaskFilename;
}
VLOG(3) << mask_filename << " mask size = " << this->mask_.size();
explicit StaticPruningHook(const ParameterUpdaterHookConfig &hookConfig)
: initCount_(0) {
sparsityRatio_ = hookConfig.sparsity_ratio();
}
void update(Parameter* para) {
static bool sortPairAscend(const std::pair<real, size_t> &pair1,
const std::pair<real, size_t> &pair2) {
return pair1.first > pair2.first;
}
void update(Parameter *para) {
updateThreadChecker_.check();
auto& vec = para->getBuf(PARAMETER_GRADIENT);
auto &vec = para->getBuf(PARAMETER_GRADIENT);
if (vec) {
vec->dotMul(*maskVec_);
}
}
void init(Parameter* para) {
size_t initCount = this->initCount_.fetch_add(1);
CHECK_EQ(initCount, 0UL) << "Currently the StaticPruningHook must invoke "
"in same ParamterUpdater";
VLOG(3) << "Initialize Parameter " << para;
SetDevice device(para->getDeviceId());
void generateMask(Parameter *para) {
VectorPtr maskTemp = Vector::create(para->getSize(), false);
maskTemp->zeroMem();
real *maskTempData = maskTemp->getData();
size_t nonZeroNum = para->getSize() * (1 - sparsityRatio_);
auto maskVec = Vector::create(this->mask_.size(), false);
{ // Initialize maskVec with float mask vector
real* dataPtr = maskVec->getData();
size_t i = 0;
for (bool m : mask_) {
dataPtr[i++] = m ? 1.0 : 0.0;
}
}
VectorPtr paraVec = para->getBuf(PARAMETER_VALUE);
VectorPtr paraCpuCopy = Vector::create(para->getSize(), false);
paraCpuCopy->copyFrom(*paraVec);
std::vector<std::pair<real, size_t>> param;
for (size_t i = 0; i < para->getSize(); i++)
param.push_back(std::make_pair(fabs(paraCpuCopy->getData()[i]), i));
std::partial_sort(
param.begin(), param.begin() + nonZeroNum, param.end(), sortPairAscend);
for (size_t i = 0; i < nonZeroNum; i++) maskTempData[param[i].second] = 1.0;
// Currently just use a mask vector for hack.
// @TODO(yuyang18): Implemented the mask operation in vector.
if (para->useGpu()) {
maskVec_ = Vector::create(this->mask_.size(), para->useGpu());
maskVec_->copyFrom(*maskVec);
maskVec_ = Vector::create(para->getSize(), para->useGpu());
maskVec_->copyFrom(*maskTemp);
} else {
maskVec_ = maskVec;
maskVec_ = maskTemp;
}
auto& vec = para->getBuf(PARAMETER_VALUE);
vec->dotMul(*maskVec_);
}
private:
bool loadMaskFile(const std::string& mask_filename) {
std::ifstream fin;
fin.open(mask_filename);
if (fin.is_open()) {
StaticMaskHeader header;
fin.read(reinterpret_cast<char*>(&header), sizeof(StaticMaskHeader));
CHECK_EQ(header.version, 0UL);
mask_.resize(header.size);
uint8_t buf;
for (size_t i = 0; i < header.size; ++i, buf <<= 1) {
if (i % 8 == 0) {
fin.read(reinterpret_cast<char*>(&buf), sizeof(uint8_t));
}
mask_[i] = buf & 0x80;
}
fin.close();
return true;
} else {
return false;
}
void init(Parameter *para) {
generateMask(para);
size_t initCount = this->initCount_.fetch_add(1);
CHECK_EQ(initCount, 0UL) << "Currently the StaticPruningHook must invoke "
"in same ParamterUpdater";
VLOG(3) << "Initialize Parameter " << para;
SetDevice device(para->getDeviceId());
auto &paraVec = para->getBuf(PARAMETER_VALUE);
paraVec->dotMul(*maskVec_);
}
private:
SameThreadChecker updateThreadChecker_;
std::atomic<size_t> initCount_;
VectorPtr maskVec_;
std::vector<bool> mask_;
real sparsityRatio_;
};
IParameterUpdaterHook::IParameterUpdaterHook() {}
@ -145,7 +117,7 @@ IParameterUpdaterHook::~IParameterUpdaterHook() {}
*/
class StringIntPairHasher {
public:
size_t operator()(const std::pair<std::string, int>& k) const {
size_t operator()(const std::pair<std::string, int> &k) const {
return intHasher_(strHasher_(k.first) + k.second);
}
@ -162,19 +134,19 @@ static WeakKVCache<std::pair<std::string, int>,
/**
* ParameterUpdaterHook actually factory method.
*/
static IParameterUpdaterHook* createImpl(
const ParameterUpdaterHookConfig& config) {
auto& type = config.type();
static IParameterUpdaterHook *createImpl(
const ParameterUpdaterHookConfig &config) {
auto &type = config.type();
if (type == "pruning") {
if (config.has_purning_mask_filename()) {
return new StaticPruningHook(config.purning_mask_filename());
}
return new StaticPruningHook(config);
}
LOG(FATAL) << "Unknown Hook type: " << type;
return nullptr;
}
std::shared_ptr<IParameterUpdaterHook> IParameterUpdaterHook::create(
const ParameterConfig& paramConfig, int idx) {
const ParameterConfig &paramConfig, int idx) {
std::pair<std::string, int> key = {paramConfig.name(), idx};
return g_hookCache_.get(
key, [&] { return createImpl(paramConfig.update_hooks(idx)); });

@ -1,12 +0,0 @@
#!/bin/bash
source ./common.sh
NPROC=1
export PYTHONPATH=/opt/python/2.7.12/lib/python2.7/site-packages
export PYTHONHOME=/opt/python/2.7.12
export PATH=/opt/python/2.7.12/bin:${PATH}
cmake .. -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DON_TRAVIS=ON -DWITH_COVERAGE=ON -DCOVERALLS_UPLOAD=ON ${EXTRA_CMAKE_OPTS}
NRPOC=`nproc`
make -j $NPROC
make coveralls
sudo make install

@ -1,15 +1,18 @@
#!/bin/bash
set -e
# Create the build directory for CMake.
mkdir -p $TRAVIS_BUILD_DIR/build
cd $TRAVIS_BUILD_DIR/build
# Add set -e, cd to directory.
source ./common.sh
# Compile Documentation only.
cmake .. -DCMAKE_BUILD_TYPE=Debug -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_STYLE_CHECK=OFF ${EXTRA_CMAKE_OPTS}
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=OFF -DWITH_STYLE_CHECK=OFF
mkdir output
make -j `nproc`
find .. -name '*whl' | xargs pip install # install all wheels.
rm -rf *
cmake .. -DCMAKE_BUILD_TYPE=Debug -DCMAKE_Fortran_COMPILER=/usr/bin/gfortran-4.8 -DWITH_GPU=OFF -DWITH_DOC=ON ${EXTRA_CMAKE_OPTS}
make paddle_docs paddle_docs_cn
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_DOC=ON
make -j `nproc` paddle_docs paddle_docs_cn
# check websites for broken links
linkchecker doc/en/html/index.html

@ -1,14 +1,14 @@
#!/bin/bash
function abort(){
echo "Your commit not fit PaddlePaddle code style" 1>&2
echo "Please use pre-commit scripts to auto-format your code" 1>&2
echo "Your change doesn't follow PaddlePaddle's code style." 1>&2
echo "Please use pre-commit to reformat your code and git push again." 1>&2
exit 1
}
trap 'abort' 0
set -e
source common.sh
cd ..
cd $TRAVIS_BUILD_DIR
export PATH=/usr/bin:$PATH
pre-commit install
clang-format --version

@ -1,6 +0,0 @@
#!/bin/bash
set -e
mkdir -p ../../../build
cd ../../../build
mkdir -p $HOME/third_party
EXTRA_CMAKE_OPTS="-DTHIRD_PARTY_PATH=${HOME}/third_party"

@ -1,13 +0,0 @@
#!/bin/bash
cd `dirname $0`
if [ ${JOB} == "BUILD_AND_TEST" ]; then
./build_and_test.sh
elif [ ${JOB} == "DOCS" ]; then
./docs.sh
elif [ ${JOB} == "PRE_COMMIT" ]; then
./precommit.sh
else
echo Unknown job ${JOB}
exit 1
fi

@ -489,6 +489,15 @@ message EvaluatorConfig {
// Used by ClassificationErrorEvaluator
// top # classification error
optional int32 top_k = 13 [default = 1];
// Used by DetectionMAPEvaluator
optional double overlap_threshold = 14 [default = 0.5];
optional int32 background_id = 15 [default = 0];
optional bool evaluate_difficult = 16 [default = false];
optional string ap_type = 17 [default = "11point"];
}
message LinkConfig {

@ -25,8 +25,10 @@ enum ParameterInitStrategy {
}
message ParameterUpdaterHookConfig {
// hook type such as 'pruning'
required string type = 1;
optional string purning_mask_filename = 2;
// this represents the ratio of zero element to be set by the Parameter
optional double sparsity_ratio = 2 [default = 0.6];
}
message ParameterConfig {

@ -1280,20 +1280,23 @@ def parse_maxout(maxout, input_layer_name, maxout_conf):
# Define an evaluator
@config_func
def Evaluator(
name,
type,
inputs,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
top_k=None,
delimited=None,
excluded_chunk_types=None, ):
def Evaluator(name,
type,
inputs,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
top_k=None,
delimited=None,
excluded_chunk_types=None,
overlap_threshold=None,
background_id=None,
evaluate_difficult=None,
ap_type=None):
evaluator = g_config.model_config.evaluators.add()
evaluator.type = type
evaluator.name = MakeLayerNameInSubmodel(name)
@ -1327,6 +1330,18 @@ def Evaluator(
if excluded_chunk_types:
evaluator.excluded_chunk_types.extend(excluded_chunk_types)
if overlap_threshold is not None:
evaluator.overlap_threshold = overlap_threshold
if background_id is not None:
evaluator.background_id = background_id
if evaluate_difficult is not None:
evaluator.evaluate_difficult = evaluate_difficult
if ap_type is not None:
evaluator.ap_type = ap_type
class LayerBase(object):
def __init__(
@ -3124,11 +3139,11 @@ def Layer(name, type, **xargs):
@config_func
def ParameterHook(type, **kwargs):
if type == 'pruning':
mask_filename = kwargs.get('mask_filename', None)
assert mask_filename is not None
hook = ParameterUpdaterHookConfig()
hook.type = type
hook.purning_mask_filename = mask_filename
sparsity_ratio = kwargs.get('sparsity_ratio', None)
if sparsity_ratio is not None:
hook.sparsity_ratio = sparsity_ratio
return hook
else:
return None
@ -3236,13 +3251,13 @@ def Parameter(name,
if update_hooks is not None:
if hasattr(update_hooks, '__call__'):
update_hooks = update_hooks(para.name)
update_hooks = update_hooks()
if isinstance(update_hooks, list):
for hook in update_hooks:
para.update_hooks.extend([hook])
else:
para.update_hooks.extend(update_hooks)
para.update_hooks.extend([update_hooks])
g_parameter_map[name] = para
if initializer is not None:

@ -14,7 +14,8 @@
from paddle.trainer.config_parser import *
__all__ = [
'ParamAttr', 'ExtraAttr', 'ParameterAttribute', 'ExtraLayerAttribute'
'HookAttr', 'ParamAttr', 'ExtraAttr', 'ParameterAttribute',
'ExtraLayerAttribute'
]
@ -55,6 +56,40 @@ def is_compatible_with(x, Type):
return False
class HookAttribute(object):
"""
Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs
during training process of a layer with parameters, such as img_conv layer, fc layer.
:param type: Hook type, currently supported types:
'pruning' : user specify a sparsity_ratio before training started, and the
network will prune the parameters based on the sparsity_ratio.
eg: The definition of Hook object can be hk = HookAttribute('pruning', 0.6)
The specific usage can be paddle.layer.img_conv(input=img, filter_size=3,
num_channels=3, num_filters=64,
param_attr=ParameterAttribute(update_hooks=hk) )
The pruning details can be found https://arxiv.org/pdf/1506.02626.pdf
:type type: string
:param sparsity_ratio: Must be specified if hook type is 'pruning',
it represents the ratio of the zero elements to be set by the Parameter.
:type sparsity_ratio: float or None
"""
def __init__(self, type, sparsity_ratio=None):
self.type = type
self.sparsity_ratio = sparsity_ratio
if self.sparsity_ratio is not None:
assert is_compatible_with(
self.sparsity_ratio,
float), 'sparisity_ratio must be float type'
assert self.sparsity_ratio <= 1 and self.sparsity_ratio >= 0, 'sparsity_ratio must be a float between [0, 1] '
def __call__(self):
return ParameterHook(self.type, sparsity_ratio=self.sparsity_ratio)
class ParameterAttribute(object):
"""
Parameter Attributes object. To fine-tuning network training process, user
@ -114,6 +149,7 @@ class ParameterAttribute(object):
momentum=None,
gradient_clipping_threshold=None,
sparse_update=False,
update_hooks=None,
initializer=None):
self.attr = {}
@ -169,6 +205,9 @@ class ParameterAttribute(object):
if initializer is not None:
self.attr['initializer'] = initializer
if update_hooks:
self.attr['update_hooks'] = update_hooks
def set_default_parameter_name(self, name):
"""
Set default parameter name. If parameter not set, then will use default
@ -244,5 +283,6 @@ class ExtraLayerAttribute(object):
return attr.attr
HookAttr = HookAttribute
ParamAttr = ParameterAttribute
ExtraAttr = ExtraLayerAttribute

@ -21,7 +21,8 @@ __all__ = [
"chunk_evaluator", "sum_evaluator", "column_sum_evaluator",
"value_printer_evaluator", "gradient_printer_evaluator",
"maxid_printer_evaluator", "maxframe_printer_evaluator",
"seqtext_printer_evaluator", "classification_error_printer_evaluator"
"seqtext_printer_evaluator", "classification_error_printer_evaluator",
"detection_map_evaluator"
]
@ -31,10 +32,11 @@ class EvaluatorAttribute(object):
FOR_RANK = 1 << 2
FOR_PRINT = 1 << 3
FOR_UTILS = 1 << 4
FOR_DETECTION = 1 << 5
KEYS = [
"for_classification", "for_regression", "for_rank", "for_print",
"for_utils"
"for_utils", "for_detection"
]
@staticmethod
@ -57,22 +59,25 @@ def evaluator(*attrs):
return impl
def evaluator_base(
input,
type,
label=None,
weight=None,
name=None,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None,
top_k=None,
excluded_chunk_types=None, ):
def evaluator_base(input,
type,
label=None,
weight=None,
name=None,
chunk_scheme=None,
num_chunk_types=None,
classification_threshold=None,
positive_label=None,
dict_file=None,
result_file=None,
num_results=None,
delimited=None,
top_k=None,
excluded_chunk_types=None,
overlap_threshold=None,
background_id=None,
evaluate_difficult=None,
ap_type=None):
"""
Evaluator will evaluate the network status while training/testing.
@ -107,6 +112,14 @@ def evaluator_base(
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
:param overlap_threshold: In detection tasks to filter detection results
:type overlap_threshold: float
:param background_id: Identifier of background class
:type background_id: int
:param evaluate_difficult: Whether to evaluate difficult objects
:type evaluate_difficult: bool
:param ap_type: How to calculate average persicion
:type ap_type: str
"""
# inputs type assertions.
assert classification_threshold is None or isinstance(
@ -136,7 +149,61 @@ def evaluator_base(
delimited=delimited,
num_results=num_results,
top_k=top_k,
excluded_chunk_types=excluded_chunk_types, )
excluded_chunk_types=excluded_chunk_types,
overlap_threshold=overlap_threshold,
background_id=background_id,
evaluate_difficult=evaluate_difficult,
ap_type=ap_type)
@evaluator(EvaluatorAttribute.FOR_DETECTION)
@wrap_name_default()
def detection_map_evaluator(input,
label,
overlap_threshold=0.5,
background_id=0,
evaluate_difficult=False,
ap_type="11point",
name=None):
"""
Detection mAP Evaluator. It will print mean Average Precision (mAP) for detection.
The detection mAP Evaluator based on the output of detection_output layer counts
the true positive and the false positive bbox and integral them to get the
mAP.
The simple usage is:
.. code-block:: python
eval = detection_map_evaluator(input=det_output,label=lbl)
:param input: Input layer.
:type input: LayerOutput
:param label: Label layer.
:type label: LayerOutput
:param overlap_threshold: The bbox overlap threshold of a true positive.
:type overlap_threshold: float
:param background_id: The background class index.
:type background_id: int
:param evaluate_difficult: Whether evaluate a difficult ground truth.
:type evaluate_difficult: bool
"""
if not isinstance(input, list):
input = [input]
if label:
input.append(label)
evaluator_base(
name=name,
type="detection_map",
input=input,
label=label,
overlap_threshold=overlap_threshold,
background_id=background_id,
evaluate_difficult=evaluate_difficult,
ap_type=ap_type)
@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)

@ -3839,7 +3839,8 @@ def classification_cost(input,
weight=None,
name=None,
evaluator=classification_error_evaluator,
layer_attr=None):
layer_attr=None,
coeff=1.):
"""
classification cost Layer.
@ -3855,6 +3856,8 @@ def classification_cost(input,
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:return: LayerOutput object.
:rtype: LayerOutput
"""
@ -3868,6 +3871,7 @@ def classification_cost(input,
name=name,
type="multi-class-cross-entropy",
inputs=ipts,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
def __add_evaluator__(e):

@ -17,10 +17,12 @@ import paddle.trainer_config_helpers.attrs
__all__ = [
"Param",
"Extra",
"Hook",
]
Param = paddle.trainer_config_helpers.attrs.ParameterAttribute
Extra = paddle.trainer_config_helpers.attrs.ExtraLayerAttribute
Hook = paddle.trainer_config_helpers.attrs.HookAttribute
for each in paddle.trainer_config_helpers.attrs.__all__:
globals()[each] = getattr(paddle.trainer_config_helpers.attrs, each)

Loading…
Cancel
Save