Enable ngraph through build_strategy (#19266)
* enable ngraph throught build_strategy test=develop * add unittest test=develop * put use_ngraph unconditional test=develop * remove paddle_enforce test=develop * remove paddle_enforce test=develop * fix copyright test=develop * limit for ngraph only test=developsigmoid_bug
parent
4cfe432cad
commit
a3a4b6e570
@ -0,0 +1,87 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from paddle.fluid.tests.unittests.simple_nets import simple_fc_net
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
from paddle.fluid import compiler
|
||||||
|
import numpy as np
|
||||||
|
import unittest
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
class TestPallelExecutorNgraph(unittest.TestCase):
|
||||||
|
def check_network_convergence(self, build_strategy=None):
|
||||||
|
os.environ['CPU_NUM'] = str(2)
|
||||||
|
main = fluid.Program()
|
||||||
|
startup = fluid.Program()
|
||||||
|
with fluid.program_guard(main, startup):
|
||||||
|
loss = simple_fc_net()
|
||||||
|
test_program = main.clone(for_test=True)
|
||||||
|
|
||||||
|
opt = fluid.optimizer.Adam(learning_rate=0.001)
|
||||||
|
opt.minimize(loss)
|
||||||
|
|
||||||
|
batch_size = 32
|
||||||
|
image = np.random.normal(size=(batch_size, 784)).astype('float32')
|
||||||
|
label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
|
||||||
|
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
exe.run(startup)
|
||||||
|
feed_dict = {'image': image, 'label': label}
|
||||||
|
|
||||||
|
train_cp = compiler.CompiledProgram(main).with_data_parallel(
|
||||||
|
loss_name=loss.name, build_strategy=build_strategy)
|
||||||
|
test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
|
||||||
|
loss_name=loss.name,
|
||||||
|
build_strategy=build_strategy,
|
||||||
|
share_vars_from=train_cp)
|
||||||
|
|
||||||
|
for i in range(5):
|
||||||
|
_ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
|
||||||
|
test_loss, = exe.run(test_cp,
|
||||||
|
fetch_list=[loss.name],
|
||||||
|
feed=feed_dict)
|
||||||
|
train_loss = exe.run(train_cp,
|
||||||
|
fetch_list=[loss.name],
|
||||||
|
feed=feed_dict)
|
||||||
|
|
||||||
|
avg_test_loss_val = np.array(test_loss).mean()
|
||||||
|
if math.isnan(float(avg_test_loss_val)):
|
||||||
|
sys.exit("got NaN loss, testing failed.")
|
||||||
|
|
||||||
|
avg_train_loss_val = np.array(train_loss).mean()
|
||||||
|
if math.isnan(float(avg_train_loss_val)):
|
||||||
|
sys.exit("got NaN loss, training failed.")
|
||||||
|
|
||||||
|
self.assertTrue(
|
||||||
|
np.allclose(
|
||||||
|
train_loss, test_loss, atol=1e-8),
|
||||||
|
"Train loss: " + str(train_loss) + "\n Test loss:" +
|
||||||
|
str(test_loss))
|
||||||
|
|
||||||
|
def test_parallel_testing(self):
|
||||||
|
build_strategy = fluid.BuildStrategy()
|
||||||
|
build_strategy.enable_inplace = False
|
||||||
|
build_strategy.memory_optimize = False
|
||||||
|
self.check_network_convergence(build_strategy=build_strategy)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue