parent
75e16bd329
commit
a4df3f5bd8
@ -0,0 +1,82 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/squared_l2_distance_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class SquaredL2DistanceOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
||||||
|
"Input of SquaredL2DistanceOp "
|
||||||
|
"must be initialized.");
|
||||||
|
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
|
||||||
|
ctx.Input<Tensor>("Y")->dims(),
|
||||||
|
"Dimensions of SquaredL2DistanceOp's two inputs "
|
||||||
|
"must be same.")
|
||||||
|
framework::DDim dims = ctx.Input<Tensor>("X")->dims();
|
||||||
|
ctx.Output<Tensor>("sub_result")->Resize(dims);
|
||||||
|
ctx.Output<Tensor>("Out")->Resize(framework::make_ddim({dims[0], 1}));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
SquaredL2DistanceOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "Input value.");
|
||||||
|
AddInput("Y", "Target value.");
|
||||||
|
AddOutput("sub_result",
|
||||||
|
"Buffering substraction result which "
|
||||||
|
"will be reused in backward.")
|
||||||
|
.AsIntermediate();
|
||||||
|
AddOutput("Out", "Squared l2 distance between input and target.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
SquaredL2DistanceOp will cacluate the squared L2 distances for
|
||||||
|
input and target. Number of distance value equals to the
|
||||||
|
first dimension of input.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
ctx.Output<Tensor>(framework::GradVarName("X"))
|
||||||
|
->Resize(ctx.Input<Tensor>("X")->dims());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(squared_l2_distance, ops::SquaredL2DistanceOp,
|
||||||
|
ops::SquaredL2DistanceOpMaker, squared_l2_distance_grad,
|
||||||
|
ops::SquaredL2DistanceGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
squared_l2_distance,
|
||||||
|
ops::SquaredL2DistanceKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
squared_l2_distance_grad,
|
||||||
|
ops::SquaredL2DistanceGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,25 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
|
||||||
|
#include "paddle/operators/squared_l2_distance_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
squared_l2_distance,
|
||||||
|
ops::SquaredL2DistanceKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
squared_l2_distance_grad,
|
||||||
|
ops::SquaredL2DistanceGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,84 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SquaredL2DistanceKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* input0 = context.Input<Tensor>("X");
|
||||||
|
auto* input1 = context.Input<Tensor>("Y");
|
||||||
|
auto* output0 = context.Output<Tensor>("sub_result");
|
||||||
|
auto* output1 = context.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
output0->mutable_data<T>(context.GetPlace());
|
||||||
|
output1->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto X = EigenMatrix<T>::From(*input0);
|
||||||
|
auto Y = EigenMatrix<T>::From(*input1);
|
||||||
|
auto subResult = EigenMatrix<T>::From(*output0);
|
||||||
|
auto Z = EigenMatrix<T>::From(*output1);
|
||||||
|
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
// buffer the substraction result
|
||||||
|
subResult.device(place) = X - Y;
|
||||||
|
const auto& inDims = X.dimensions();
|
||||||
|
const auto& subResMat = subResult.reshape(Eigen::array<int, 2>(
|
||||||
|
{static_cast<int>(inDims[0]), static_cast<int>(X.size() / inDims[0])}));
|
||||||
|
Z.device(place) = subResMat.pow(2).sum(Eigen::array<int, 1>({1}));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SquaredL2DistanceGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* input0 = context.Input<Tensor>("sub_result");
|
||||||
|
auto* OG = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* IG = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
IG->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto subResult = EigenMatrix<T>::From(*input0);
|
||||||
|
auto outGrad = EigenMatrix<T>::From(*OG);
|
||||||
|
auto inGrad = EigenMatrix<T>::From(*IG);
|
||||||
|
|
||||||
|
const auto& subResDims = subResult.dimensions();
|
||||||
|
int firstDim = static_cast<int>(subResDims[0]);
|
||||||
|
int cols = subResult.size() / firstDim;
|
||||||
|
const auto subResMat =
|
||||||
|
subResult.reshape(Eigen::array<int, 2>({firstDim, cols}));
|
||||||
|
// create a matrix view for input gradient tensor
|
||||||
|
auto inGradMat = inGrad.reshape(Eigen::array<int, 2>({firstDim, cols}));
|
||||||
|
inGradMat.device(context.GetEigenDevice<Place>()) =
|
||||||
|
2 * (outGrad.broadcast(Eigen::array<int, 2>({1, cols}))) * subResMat;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,25 @@
|
|||||||
|
import unittest
|
||||||
|
from op_test_util import OpTestMeta
|
||||||
|
from gradient_checker import GradientChecker, create_op
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class TestSquaredL2DistanceOp(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = 'squared_l2_distance'
|
||||||
|
self.inputs = {
|
||||||
|
'X': np.random.uniform(0.1, 1., (2, 3)).astype('float32'),
|
||||||
|
'Y': np.random.uniform(0.1, 1., (2, 3)).astype('float32')
|
||||||
|
}
|
||||||
|
subRes = self.inputs['X'] - self.inputs['Y']
|
||||||
|
output = subRes * subRes
|
||||||
|
self.outputs = {
|
||||||
|
'sub_result': subRes,
|
||||||
|
'Out': np.expand_dims(output.sum(1), 1)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue