commit
a55dd22649
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,244 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Conv3DLayer.h"
|
||||
#include "paddle/utils/Logging.h"
|
||||
#include "paddle/utils/Stat.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(conv3d, Conv3DLayer);
|
||||
|
||||
bool Conv3DLayer::init(const LayerMap &layerMap,
|
||||
const ParameterMap ¶meterMap) {
|
||||
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
|
||||
int index = 0;
|
||||
for (auto &inputConfig : config_.inputs()) {
|
||||
const ConvConfig &conf = inputConfig.conv_conf();
|
||||
M_.push_back(numFilters_ / conf.groups());
|
||||
K_.push_back(filterPixels_[index] * filterChannels_[index]);
|
||||
|
||||
// create a new weight
|
||||
size_t height, width;
|
||||
width = filterPixels_[index] * filterChannels_[index];
|
||||
height = numFilters_;
|
||||
CHECK_EQ(parameters_[index]->getSize(), width * height);
|
||||
Weight *w = new Weight(height, width, parameters_[index]);
|
||||
weights_.emplace_back(w);
|
||||
++index;
|
||||
}
|
||||
if (biasParameter_.get()) {
|
||||
if (sharedBiases_) {
|
||||
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
|
||||
} else {
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t Conv3DLayer::getSize() {
|
||||
CHECK_NE(inputLayers_.size(), 0UL);
|
||||
outputH_.clear();
|
||||
outputW_.clear();
|
||||
outputD_.clear();
|
||||
N_.clear();
|
||||
size_t layerSize = 0;
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
outputW_.push_back(outputSize(
|
||||
imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
|
||||
outputH_.push_back(outputSize(
|
||||
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
|
||||
outputD_.push_back(outputSize(
|
||||
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
|
||||
|
||||
N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
|
||||
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
|
||||
layerSize += N_[i] * numFilters_;
|
||||
}
|
||||
getOutput().setFrameHeight(outputH_[0]);
|
||||
getOutput().setFrameWidth(outputW_[0]);
|
||||
getOutput().setFrameDepth(outputD_[0]);
|
||||
return layerSize;
|
||||
}
|
||||
|
||||
void Conv3DLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
int outWidth = getSize();
|
||||
resetOutput(batchSize, outWidth);
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
const MatrixPtr &outMat = getOutputValue();
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
|
||||
channels_[i],
|
||||
imgSizeD_[i],
|
||||
imgSizeH_[i],
|
||||
imgSizeW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i]);
|
||||
|
||||
real *outData = outMat->getData() + n * outMat->getStride();
|
||||
MatrixPtr outMatSub =
|
||||
Matrix::create(outData, groups_[i] * M, N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; g++) {
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
|
||||
MatrixPtr in = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr out = outMatSub->subMatrix(g * M, M);
|
||||
out->mul(*wMatSub, *in, 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (nullptr != this->biasParameter_) {
|
||||
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
||||
this->addBias();
|
||||
}
|
||||
forwardActivation();
|
||||
}
|
||||
|
||||
void Conv3DLayer::backward(const UpdateCallback &callback) {
|
||||
backwardActivation();
|
||||
|
||||
if (biases_ && biases_->getWGrad()) {
|
||||
bpropBiases();
|
||||
biases_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
|
||||
if (weights_[i]->getWGrad()) {
|
||||
bpropWeights(i);
|
||||
}
|
||||
if (getInputGrad(i)) {
|
||||
bpropData(i);
|
||||
}
|
||||
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
||||
weights_[i]->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropWeights(int i) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wGradMat = weights_[i]->getWGrad();
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
|
||||
channels_[i],
|
||||
imgSizeD_[i],
|
||||
imgSizeH_[i],
|
||||
imgSizeW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i]);
|
||||
|
||||
real *outGradData =
|
||||
getOutputGrad()->getData() + n * getOutputGrad()->getStride();
|
||||
MatrixPtr outGradSub =
|
||||
Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
|
||||
MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M);
|
||||
wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropData(int i) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
real *outGradData =
|
||||
getOutputGrad()->getData() + n * getOutputGrad()->getStride();
|
||||
real *preGradData =
|
||||
getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
|
||||
MatrixPtr outGradSub =
|
||||
Matrix::create(outGradData, M * groups_[i], N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
|
||||
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
|
||||
MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K);
|
||||
inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0);
|
||||
}
|
||||
colBuf_->col2Vol(preGradData,
|
||||
channels_[i],
|
||||
imgSizeD_[i],
|
||||
imgSizeH_[i],
|
||||
imgSizeW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i],
|
||||
1.0,
|
||||
1.0);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropBiases() {
|
||||
MatrixPtr outGradMat = getOutputGrad();
|
||||
if (this->sharedBiases_) {
|
||||
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
|
||||
} else {
|
||||
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::addBias() {
|
||||
MatrixPtr outMat = getOutputValue();
|
||||
if (this->sharedBiases_) {
|
||||
outMat->addSharedBias(*(biases_->getW()), 1.0f);
|
||||
} else {
|
||||
outMat->addBias(*(biases_->getW()), 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,51 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <vector>
|
||||
#include "ConvBaseLayer.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief A subclass of convolution layer.
|
||||
* This layer expands input and use matrix multiplication to
|
||||
* calculate convolution operation.
|
||||
*/
|
||||
class Conv3DLayer : public ConvBaseLayer {
|
||||
public:
|
||||
explicit Conv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
|
||||
~Conv3DLayer() {}
|
||||
|
||||
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
||||
|
||||
void forward(PassType passType);
|
||||
void addBias();
|
||||
void backward(const UpdateCallback& callback);
|
||||
void bpropBiases();
|
||||
void bpropData(int i);
|
||||
void bpropWeights(int i);
|
||||
size_t getSize();
|
||||
|
||||
protected:
|
||||
// Figure out the dimensions for individual gemms.
|
||||
IntV M_; /// numFilters_ / filter_group_;
|
||||
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
|
||||
IntV K_; /// outputD_ * outputH_ * outputW_
|
||||
MatrixPtr colBuf_;
|
||||
};
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,212 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "DeConv3DLayer.h"
|
||||
#include "paddle/utils/Logging.h"
|
||||
#include "paddle/utils/Stat.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(deconv3d, DeConv3DLayer);
|
||||
|
||||
bool DeConv3DLayer::init(const LayerMap &layerMap,
|
||||
const ParameterMap ¶meterMap) {
|
||||
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
|
||||
// for Deconv, the dimension of Kernel is
|
||||
// channel * output * depth * height * weigth
|
||||
// Matrix storage format: (output * depth * height * weigth) x channel
|
||||
for (int index = 0; index < config_.inputs().size(); ++index) {
|
||||
M_.push_back(filterChannels_[index]);
|
||||
K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index]));
|
||||
|
||||
// create a new weight
|
||||
size_t height, width;
|
||||
height = filterPixels_[index] * numFilters_;
|
||||
width = filterChannels_[index];
|
||||
CHECK_EQ(parameters_[index]->getSize(), width * height);
|
||||
Weight *w = new Weight(height, width, parameters_[index]);
|
||||
weights_.emplace_back(w);
|
||||
}
|
||||
if (biasParameter_.get()) {
|
||||
if (sharedBiases_) {
|
||||
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
|
||||
} else {
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t DeConv3DLayer::getSize() {
|
||||
CHECK_NE(inputLayers_.size(), 0UL);
|
||||
outputH_.clear();
|
||||
outputW_.clear();
|
||||
outputD_.clear();
|
||||
N_.clear();
|
||||
NOut_.clear();
|
||||
size_t layerSize = 0;
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
outputW_.push_back(
|
||||
imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
|
||||
outputH_.push_back(imageSize(
|
||||
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
|
||||
outputD_.push_back(imageSize(
|
||||
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
|
||||
NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
|
||||
N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
|
||||
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
|
||||
layerSize += NOut_[i] * numFilters_;
|
||||
}
|
||||
getOutput().setFrameHeight(outputH_[0]);
|
||||
getOutput().setFrameWidth(outputW_[0]);
|
||||
getOutput().setFrameDepth(outputD_[0]);
|
||||
return layerSize;
|
||||
}
|
||||
|
||||
void DeConv3DLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
int outWidth = getSize();
|
||||
resetOutput(batchSize, outWidth);
|
||||
const MatrixPtr outMat = getOutputValue();
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
real *inData = inMat->getData() + n * inMat->getStride();
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
|
||||
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
|
||||
colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
|
||||
inData += M * N;
|
||||
}
|
||||
colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
|
||||
numFilters_,
|
||||
outputD_[i],
|
||||
outputH_[i],
|
||||
outputW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i],
|
||||
1.0,
|
||||
1.0);
|
||||
}
|
||||
}
|
||||
if (nullptr != this->biasParameter_) {
|
||||
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
||||
this->addBias();
|
||||
}
|
||||
forwardActivation();
|
||||
}
|
||||
|
||||
void DeConv3DLayer::backward(const UpdateCallback &callback) {
|
||||
backwardActivation();
|
||||
int batchSize = getOutputGrad()->getHeight();
|
||||
if (biases_ && biases_->getWGrad()) {
|
||||
bpropBiases();
|
||||
biases_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
if (weights_[i]->getWGrad() || this->needGradient_) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(
|
||||
getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
|
||||
numFilters_,
|
||||
outputD_[i],
|
||||
outputH_[i],
|
||||
outputW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i]);
|
||||
if (weights_[i]->getWGrad()) {
|
||||
real *inData = inMat->getData() + n * inMat->getStride();
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr wGradMatSub =
|
||||
weights_[i]->getWGrad()->subMatrix(g * K, K);
|
||||
MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
|
||||
wGradMatSub->mul(
|
||||
*colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0);
|
||||
inData += M * N;
|
||||
}
|
||||
}
|
||||
if (getInputGrad(i)) {
|
||||
real *preGrad =
|
||||
getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
|
||||
MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr inGradMatSub =
|
||||
Matrix::create(preGrad, M, N, false, useGpu_);
|
||||
inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0);
|
||||
preGrad += M * N;
|
||||
}
|
||||
}
|
||||
}
|
||||
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
||||
weights_[i]->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
}
|
||||
}
|
||||
void DeConv3DLayer::bpropWeights(int i) {}
|
||||
void DeConv3DLayer::bpropData(int i) {}
|
||||
|
||||
void DeConv3DLayer::bpropBiases() {
|
||||
const MatrixPtr &outGradMat = getOutputGrad();
|
||||
|
||||
if (this->sharedBiases_) {
|
||||
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
|
||||
} else {
|
||||
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
void DeConv3DLayer::addBias() {
|
||||
MatrixPtr outMat = getOutputValue();
|
||||
if (this->sharedBiases_) {
|
||||
outMat->addSharedBias(*(biases_->getW()), 1.0f);
|
||||
} else {
|
||||
outMat->addBias(*(biases_->getW()), 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,52 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "ConvBaseLayer.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief A subclass of deconvolution3D layer.
|
||||
* This layer expands input and use matrix multiplication to
|
||||
* calculate deconvolution3D operation.
|
||||
*/
|
||||
class DeConv3DLayer : public ConvBaseLayer {
|
||||
public:
|
||||
explicit DeConv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
|
||||
~DeConv3DLayer() {}
|
||||
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
||||
|
||||
void forward(PassType passType);
|
||||
void addBias();
|
||||
void backward(const UpdateCallback& callback);
|
||||
void bpropBiases();
|
||||
void bpropData(int i);
|
||||
void bpropWeights(int i);
|
||||
size_t getSize();
|
||||
|
||||
protected:
|
||||
// Figure out the dimensions for individual gemms.
|
||||
IntV M_; /// numFilters_ / filter_group_;
|
||||
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
|
||||
IntV K_; /// outputD_ * outputH_ * outputW_
|
||||
IntV NOut_;
|
||||
MatrixPtr colBuf_;
|
||||
};
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,178 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Pool3DLayer.h"
|
||||
#include "PoolProjectionLayer.h"
|
||||
#include "paddle/utils/Logging.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(pool3d, Pool3DLayer);
|
||||
|
||||
bool Pool3DLayer::init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) {
|
||||
Layer::init(layerMap, parameterMap);
|
||||
|
||||
/* the size of inputs for pool-layer is 1 */
|
||||
CHECK_EQ(config_.inputs_size(), 1);
|
||||
|
||||
const PoolConfig& conf = config_.inputs(0).pool_conf();
|
||||
poolType_ = conf.pool_type();
|
||||
channels_ = conf.channels();
|
||||
|
||||
sizeX_ = conf.size_x();
|
||||
sizeY_ = conf.size_y();
|
||||
sizeZ_ = conf.size_z();
|
||||
|
||||
strideW_ = conf.stride();
|
||||
strideH_ = conf.stride_y();
|
||||
strideD_ = conf.stride_z();
|
||||
|
||||
imgSizeW_ = conf.img_size();
|
||||
imgSizeH_ = conf.img_size_y();
|
||||
imgSizeD_ = conf.img_size_z();
|
||||
|
||||
paddingW_ = conf.padding();
|
||||
paddingH_ = conf.padding_y();
|
||||
paddingD_ = conf.padding_z();
|
||||
|
||||
outputW_ = conf.output_x();
|
||||
outputH_ = conf.output_y();
|
||||
outputD_ = conf.output_z();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t Pool3DLayer::getSize() {
|
||||
CHECK_EQ(inputLayers_.size(), 1UL);
|
||||
|
||||
size_t layerSize = 0;
|
||||
outputD_ = outputSize(imgSizeD_, sizeZ_, paddingD_, strideD_, false);
|
||||
outputH_ = outputSize(imgSizeH_, sizeY_, paddingH_, strideH_, false);
|
||||
outputW_ = outputSize(imgSizeW_, sizeX_, paddingW_, strideW_, false);
|
||||
|
||||
layerSize = outputD_ * outputH_ * outputW_ * channels_;
|
||||
getOutput().setFrameHeight(outputH_);
|
||||
getOutput().setFrameWidth(outputW_);
|
||||
getOutput().setFrameDepth(outputD_);
|
||||
return layerSize;
|
||||
}
|
||||
|
||||
void Pool3DLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
|
||||
size_t batchSize = inMat->getHeight();
|
||||
size_t outWidth = getSize();
|
||||
resetOutput(batchSize, outWidth);
|
||||
Matrix::resizeOrCreate(maxPoolIdx_, batchSize, outWidth, false, useGpu_);
|
||||
const MatrixPtr outMat = getOutputValue();
|
||||
|
||||
if (poolType_ == "avg") {
|
||||
outMat->avgPool3DForward(*inMat,
|
||||
channels_,
|
||||
imgSizeD_,
|
||||
imgSizeH_,
|
||||
imgSizeW_,
|
||||
outputD_,
|
||||
outputH_,
|
||||
outputW_,
|
||||
sizeZ_,
|
||||
sizeY_,
|
||||
sizeX_,
|
||||
strideD_,
|
||||
strideH_,
|
||||
strideW_,
|
||||
paddingD_,
|
||||
paddingH_,
|
||||
paddingW_);
|
||||
} else if (poolType_ == "max") {
|
||||
outMat->maxPool3DForward(*inMat,
|
||||
*maxPoolIdx_,
|
||||
channels_,
|
||||
imgSizeD_,
|
||||
imgSizeH_,
|
||||
imgSizeW_,
|
||||
outputD_,
|
||||
outputH_,
|
||||
outputW_,
|
||||
sizeZ_,
|
||||
sizeY_,
|
||||
sizeX_,
|
||||
strideD_,
|
||||
strideH_,
|
||||
strideW_,
|
||||
paddingD_,
|
||||
paddingH_,
|
||||
paddingW_);
|
||||
} else {
|
||||
LOG(FATAL) << "Unknown pool type: " << poolType_;
|
||||
}
|
||||
forwardActivation();
|
||||
}
|
||||
|
||||
void Pool3DLayer::backward(const UpdateCallback& callback) {
|
||||
backwardActivation();
|
||||
|
||||
(void)callback;
|
||||
if (NULL == getInputGrad(0)) return;
|
||||
MatrixPtr inMat = inputLayers_[0]->getOutputValue();
|
||||
MatrixPtr inGradMat = inputLayers_[0]->getOutputGrad();
|
||||
MatrixPtr outMat = getOutputValue();
|
||||
MatrixPtr outGradMat = getOutputGrad();
|
||||
|
||||
if (poolType_ == "avg") {
|
||||
inGradMat->avgPool3DBackward(*outGradMat,
|
||||
imgSizeD_,
|
||||
imgSizeH_,
|
||||
imgSizeW_,
|
||||
outputD_,
|
||||
outputH_,
|
||||
outputW_,
|
||||
sizeZ_,
|
||||
sizeY_,
|
||||
sizeZ_,
|
||||
strideD_,
|
||||
strideH_,
|
||||
strideW_,
|
||||
paddingD_,
|
||||
paddingH_,
|
||||
paddingW_,
|
||||
1.0,
|
||||
1.0);
|
||||
} else if (poolType_ == "max") {
|
||||
inGradMat->maxPool3DBackward(*outGradMat,
|
||||
*maxPoolIdx_,
|
||||
imgSizeD_,
|
||||
imgSizeH_,
|
||||
imgSizeW_,
|
||||
outputD_,
|
||||
outputH_,
|
||||
outputW_,
|
||||
sizeZ_,
|
||||
sizeY_,
|
||||
sizeZ_,
|
||||
strideD_,
|
||||
strideH_,
|
||||
strideW_,
|
||||
paddingD_,
|
||||
paddingH_,
|
||||
paddingW_,
|
||||
1.0,
|
||||
1.0);
|
||||
} else {
|
||||
LOG(FATAL) << "Unknown pool type: " << poolType_;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,49 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "Layer.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief Basic parent layer of pooling
|
||||
* Pools the input within regions
|
||||
*/
|
||||
class Pool3DLayer : public Layer {
|
||||
public:
|
||||
explicit Pool3DLayer(const LayerConfig& config) : Layer(config) {}
|
||||
~Pool3DLayer() {}
|
||||
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
void forward(PassType passType) override;
|
||||
void backward(const UpdateCallback& callback) override;
|
||||
size_t getSize();
|
||||
|
||||
protected:
|
||||
int channels_;
|
||||
int sizeX_, sizeY_, sizeZ_;
|
||||
int strideW_, strideH_, strideD_;
|
||||
int paddingW_, paddingH_, paddingD_;
|
||||
int imgSizeW_, imgSizeH_, imgSizeD_;
|
||||
int outputW_, outputH_, outputD_;
|
||||
std::string poolType_;
|
||||
MatrixPtr maxPoolIdx_;
|
||||
};
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue