Add xpu transpose2 op.test=kunlun (#28086)
	
		
	
				
					
				
			
							parent
							
								
									a5f65d516f
								
							
						
					
					
						commit
						a5c95cd588
					
				@ -0,0 +1,192 @@
 | 
				
			||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
 | 
				
			||||
Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
you may not use this file except in compliance with the License.
 | 
				
			||||
You may obtain a copy of the License at
 | 
				
			||||
 | 
				
			||||
    http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
 | 
				
			||||
Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
See the License for the specific language governing permissions and
 | 
				
			||||
limitations under the License. */
 | 
				
			||||
 | 
				
			||||
#ifdef PADDLE_WITH_XPU
 | 
				
			||||
#include "paddle/fluid/operators/transpose_op.h"
 | 
				
			||||
#include <memory>
 | 
				
			||||
#include <string>
 | 
				
			||||
#include <vector>
 | 
				
			||||
 | 
				
			||||
namespace paddle {
 | 
				
			||||
namespace operators {
 | 
				
			||||
 | 
				
			||||
using framework::Tensor;
 | 
				
			||||
 | 
				
			||||
bool XPUSupported(int ndims, const std::vector<int>& axis) {
 | 
				
			||||
  /*
 | 
				
			||||
   * XPU currently support:
 | 
				
			||||
   * permute = {0, 2, 1}, permute = {1, 0},
 | 
				
			||||
   * permute = {0, 2, 1, 3}, permute = {1, 0, 2},
 | 
				
			||||
   * permute = {0, 2, 3, 1}
 | 
				
			||||
   */
 | 
				
			||||
  bool is_supported = false;
 | 
				
			||||
  std::vector<int> permute_10(2, 0);
 | 
				
			||||
  std::vector<int> permute_102(3, 0);
 | 
				
			||||
  std::vector<int> permute_021(3, 0);
 | 
				
			||||
  std::vector<int> permute_210(3, 0);
 | 
				
			||||
  std::vector<int> permute_0213(4, 0);
 | 
				
			||||
  std::vector<int> permute_0231(4, 0);
 | 
				
			||||
  std::vector<int> permute_0312(4, 0);
 | 
				
			||||
  std::vector<int> permute_3201(4, 0);
 | 
				
			||||
  permute_10[0] = 1;
 | 
				
			||||
  permute_102[0] = 1;
 | 
				
			||||
  permute_102[2] = 2;
 | 
				
			||||
  permute_021[1] = 2;
 | 
				
			||||
  permute_021[2] = 1;
 | 
				
			||||
  permute_210[0] = 2;
 | 
				
			||||
  permute_210[1] = 1;
 | 
				
			||||
  permute_0213[1] = 2;
 | 
				
			||||
  permute_0213[2] = 1;
 | 
				
			||||
  permute_0213[3] = 3;
 | 
				
			||||
  permute_0231[1] = 2;
 | 
				
			||||
  permute_0231[2] = 3;
 | 
				
			||||
  permute_0231[3] = 1;
 | 
				
			||||
  permute_0312[1] = 3;
 | 
				
			||||
  permute_0312[2] = 1;
 | 
				
			||||
  permute_0312[3] = 2;
 | 
				
			||||
  permute_3201[0] = 3;
 | 
				
			||||
  permute_3201[1] = 2;
 | 
				
			||||
  permute_3201[3] = 1;
 | 
				
			||||
  switch (ndims) {
 | 
				
			||||
    case 2:
 | 
				
			||||
      if (axis == permute_10) {
 | 
				
			||||
        is_supported = true;
 | 
				
			||||
      }
 | 
				
			||||
      break;
 | 
				
			||||
    case 3:
 | 
				
			||||
      if ((axis == permute_021) || (axis == permute_102) ||
 | 
				
			||||
          (axis == permute_210)) {
 | 
				
			||||
        is_supported = true;
 | 
				
			||||
      }
 | 
				
			||||
      break;
 | 
				
			||||
    case 4:
 | 
				
			||||
      if ((axis == permute_0213) || (axis == permute_0231) ||
 | 
				
			||||
          (axis == permute_0312) || (axis == permute_3201)) {
 | 
				
			||||
        is_supported = true;
 | 
				
			||||
      }
 | 
				
			||||
      break;
 | 
				
			||||
    default:
 | 
				
			||||
      PADDLE_THROW(platform::errors::Unimplemented(
 | 
				
			||||
          "Tensors with rank only 2, 3 and 4 are supported on XPU"));
 | 
				
			||||
  }
 | 
				
			||||
  return is_supported;
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
template <typename DeviceContext, typename T>
 | 
				
			||||
class TransposeXPUKernel : public framework::OpKernel<T> {
 | 
				
			||||
 public:
 | 
				
			||||
  void Compute(const framework::ExecutionContext& context) const override {
 | 
				
			||||
    auto x = context.Input<framework::Tensor>("X");
 | 
				
			||||
    auto out = context.Output<framework::Tensor>("Out");
 | 
				
			||||
    // axis is permute
 | 
				
			||||
    auto axis = context.Attr<std::vector<int>>("axis");
 | 
				
			||||
    int ndims = axis.size();
 | 
				
			||||
    const auto x_dims = x->dims();
 | 
				
			||||
 | 
				
			||||
    const T* x_data = x->data<T>();
 | 
				
			||||
    T* y_data = out->mutable_data<T>(context.GetPlace());
 | 
				
			||||
    if (!XPUSupported(ndims, axis)) {
 | 
				
			||||
      VLOG(0) << "XPU does not support the permute, try to do on cpu";
 | 
				
			||||
      framework::Tensor x_cpu;
 | 
				
			||||
      framework::Tensor out_cpu;
 | 
				
			||||
      auto x_cpu_data = x_cpu.mutable_data<T>(x->dims(), platform::CPUPlace());
 | 
				
			||||
      auto out_cpu_data =
 | 
				
			||||
          out_cpu.mutable_data<T>(out->dims(), platform::CPUPlace());
 | 
				
			||||
      memory::Copy(platform::CPUPlace(), reinterpret_cast<void*>(x_cpu_data),
 | 
				
			||||
                   BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
 | 
				
			||||
                   (const void*)x_data, x->numel() * sizeof(T));
 | 
				
			||||
 | 
				
			||||
      const platform::CPUDeviceContext* cpu_dev_ctx =
 | 
				
			||||
          static_cast<const platform::CPUDeviceContext*>(
 | 
				
			||||
              platform::DeviceContextPool::Instance().Get(
 | 
				
			||||
                  platform::CPUPlace()));
 | 
				
			||||
      TransCompute<platform::CPUDeviceContext, T>(ndims, *cpu_dev_ctx, x_cpu,
 | 
				
			||||
                                                  &out_cpu, axis);
 | 
				
			||||
      memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
 | 
				
			||||
                   reinterpret_cast<void*>(y_data), platform::CPUPlace(),
 | 
				
			||||
                   (const void*)out_cpu_data, out->numel() * sizeof(T));
 | 
				
			||||
      return;
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    std::vector<int> x_shape_host(ndims, 0);
 | 
				
			||||
    for (int i = 0; i < ndims; ++i) {
 | 
				
			||||
      x_shape_host[i] = x_dims[i];
 | 
				
			||||
    }
 | 
				
			||||
    int* permute_host = axis.data();
 | 
				
			||||
    auto& dev_ctx = context.template device_context<DeviceContext>();
 | 
				
			||||
    int r = xpu::transpose(dev_ctx.x_context(), x_data, y_data,
 | 
				
			||||
                           x_shape_host.data(), permute_host, ndims);
 | 
				
			||||
    PADDLE_ENFORCE_EQ(
 | 
				
			||||
        r, xpu::Error_t::SUCCESS,
 | 
				
			||||
        platform::errors::External("XPU kernel error! error code=%d", r));
 | 
				
			||||
  }
 | 
				
			||||
};
 | 
				
			||||
 | 
				
			||||
template <typename DeviceContext, typename T>
 | 
				
			||||
class TransposeGradXPUKernel : public framework::OpKernel<T> {
 | 
				
			||||
 public:
 | 
				
			||||
  void Compute(const framework::ExecutionContext& context) const override {
 | 
				
			||||
    auto* out_grad =
 | 
				
			||||
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
				
			||||
    auto* x_grad =
 | 
				
			||||
        context.Output<framework::Tensor>(framework::GradVarName("X"));
 | 
				
			||||
    if (!x_grad) return;
 | 
				
			||||
 | 
				
			||||
    x_grad->mutable_data<T>(context.GetPlace());
 | 
				
			||||
    std::vector<int> axis = context.Attr<std::vector<int>>("axis");
 | 
				
			||||
    std::vector<int> reversed_axis(axis);
 | 
				
			||||
    for (size_t i = 0; i < axis.size(); i++) {
 | 
				
			||||
      reversed_axis[axis[i]] = i;
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    int ndims = axis.size();
 | 
				
			||||
    if (!XPUSupported(ndims, reversed_axis)) {
 | 
				
			||||
      PADDLE_THROW(
 | 
				
			||||
          platform::errors::Unimplemented("XPU does not support the permute"));
 | 
				
			||||
    }
 | 
				
			||||
 | 
				
			||||
    std::vector<int> out_shape_host(ndims, 0);
 | 
				
			||||
    for (int i = 0; i < ndims; ++i) {
 | 
				
			||||
      out_shape_host[i] = out_grad->dims()[i];
 | 
				
			||||
    }
 | 
				
			||||
    int* permute_host = reversed_axis.data();
 | 
				
			||||
    auto& dev_ctx = context.template device_context<DeviceContext>();
 | 
				
			||||
    int r = xpu::transpose(dev_ctx.x_context(), out_grad->data<T>(),
 | 
				
			||||
                           x_grad->data<T>(), out_shape_host.data(),
 | 
				
			||||
                           permute_host, ndims);
 | 
				
			||||
    PADDLE_ENFORCE_EQ(
 | 
				
			||||
        r, xpu::Error_t::SUCCESS,
 | 
				
			||||
        platform::errors::External("XPU kernel error! error code=%d", r));
 | 
				
			||||
  }
 | 
				
			||||
};
 | 
				
			||||
 | 
				
			||||
}  // namespace operators
 | 
				
			||||
}  // namespace paddle
 | 
				
			||||
 | 
				
			||||
namespace ops = paddle::operators;
 | 
				
			||||
 | 
				
			||||
REGISTER_OP_XPU_KERNEL(
 | 
				
			||||
    transpose,
 | 
				
			||||
    ops::TransposeXPUKernel<paddle::platform::XPUDeviceContext, float>);
 | 
				
			||||
REGISTER_OP_XPU_KERNEL(
 | 
				
			||||
    transpose_grad,
 | 
				
			||||
    ops::TransposeGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
 | 
				
			||||
REGISTER_OP_XPU_KERNEL(
 | 
				
			||||
    transpose2,
 | 
				
			||||
    ops::TransposeXPUKernel<paddle::platform::XPUDeviceContext, float>);
 | 
				
			||||
REGISTER_OP_XPU_KERNEL(
 | 
				
			||||
    transpose2_grad,
 | 
				
			||||
    ops::TransposeGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
 | 
				
			||||
 | 
				
			||||
#endif  // PADDLE_WITH_XPU
 | 
				
			||||
@ -0,0 +1,230 @@
 | 
				
			||||
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
from __future__ import print_function
 | 
				
			||||
 | 
				
			||||
import unittest
 | 
				
			||||
import numpy as np
 | 
				
			||||
import sys
 | 
				
			||||
 | 
				
			||||
sys.path.append("..")
 | 
				
			||||
from op_test import OpTest
 | 
				
			||||
import paddle
 | 
				
			||||
import paddle.fluid as fluid
 | 
				
			||||
from paddle.fluid import compiler, Program, program_guard
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestXPUTransposeOp(OpTest):
 | 
				
			||||
    def setUp(self):
 | 
				
			||||
        self.init_op_type()
 | 
				
			||||
        self.initTestCase()
 | 
				
			||||
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
 | 
				
			||||
        self.attrs = {
 | 
				
			||||
            'axis': list(self.axis),
 | 
				
			||||
            'use_mkldnn': False,
 | 
				
			||||
            'use_xpu': True
 | 
				
			||||
        }
 | 
				
			||||
        self.outputs = {
 | 
				
			||||
            'XShape': np.random.random(self.shape).astype("float64"),
 | 
				
			||||
            'Out': self.inputs['X'].transpose(self.axis)
 | 
				
			||||
        }
 | 
				
			||||
 | 
				
			||||
    def init_op_type(self):
 | 
				
			||||
        self.op_type = "transpose2"
 | 
				
			||||
        self.use_mkldnn = False
 | 
				
			||||
 | 
				
			||||
    def test_check_output(self):
 | 
				
			||||
        if paddle.is_compiled_with_xpu():
 | 
				
			||||
            paddle.enable_static()
 | 
				
			||||
            place = paddle.XPUPlace(0)
 | 
				
			||||
            self.check_output_with_place(place=place, no_check_set=['XShape'])
 | 
				
			||||
 | 
				
			||||
    def test_check_grad(self):
 | 
				
			||||
        if paddle.is_compiled_with_xpu():
 | 
				
			||||
            paddle.enable_static()
 | 
				
			||||
            place = paddle.XPUPlace(0)
 | 
				
			||||
            self.check_grad_with_place(place, ['X'], 'Out')
 | 
				
			||||
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (3, 40)
 | 
				
			||||
        self.axis = (1, 0)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase0(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (100, )
 | 
				
			||||
        self.axis = (0, )
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase1(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (3, 4, 10)
 | 
				
			||||
        self.axis = (0, 2, 1)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase2(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 3, 4, 5)
 | 
				
			||||
        self.axis = (0, 2, 3, 1)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase3(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 3, 4, 5, 6)
 | 
				
			||||
        self.axis = (4, 2, 3, 1, 0)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase4(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 3, 4, 5, 6, 1)
 | 
				
			||||
        self.axis = (4, 2, 3, 1, 0, 5)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase5(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 16, 96)
 | 
				
			||||
        self.axis = (0, 2, 1)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase6(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 10, 12, 16)
 | 
				
			||||
        self.axis = (3, 1, 2, 0)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase7(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 10, 2, 16)
 | 
				
			||||
        self.axis = (0, 1, 3, 2)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase8(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
 | 
				
			||||
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase9(TestXPUTransposeOp):
 | 
				
			||||
    def initTestCase(self):
 | 
				
			||||
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
 | 
				
			||||
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestTransposeOpError(unittest.TestCase):
 | 
				
			||||
    def test_errors(self):
 | 
				
			||||
        with program_guard(Program(), Program()):
 | 
				
			||||
            x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
 | 
				
			||||
 | 
				
			||||
            def test_x_Variable_check():
 | 
				
			||||
                # the Input(x)'s type must be Variable
 | 
				
			||||
                fluid.layers.transpose("not_variable", perm=[1, 0, 2])
 | 
				
			||||
 | 
				
			||||
            self.assertRaises(TypeError, test_x_Variable_check)
 | 
				
			||||
 | 
				
			||||
            def test_x_dtype_check():
 | 
				
			||||
                # the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
 | 
				
			||||
                x1 = fluid.layers.data(
 | 
				
			||||
                    name='x1', shape=[10, 5, 3], dtype='bool')
 | 
				
			||||
                fluid.layers.transpose(x1, perm=[1, 0, 2])
 | 
				
			||||
 | 
				
			||||
            self.assertRaises(TypeError, test_x_dtype_check)
 | 
				
			||||
 | 
				
			||||
            def test_perm_list_check():
 | 
				
			||||
                # Input(perm)'s type must be list
 | 
				
			||||
                fluid.layers.transpose(x, perm="[1, 0, 2]")
 | 
				
			||||
 | 
				
			||||
            self.assertRaises(TypeError, test_perm_list_check)
 | 
				
			||||
 | 
				
			||||
            def test_perm_length_and_x_dim_check():
 | 
				
			||||
                # Input(perm) is the permutation of dimensions of Input(input)
 | 
				
			||||
                # its length should be equal to dimensions of Input(input)
 | 
				
			||||
                fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])
 | 
				
			||||
 | 
				
			||||
            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)
 | 
				
			||||
 | 
				
			||||
            def test_each_elem_value_check():
 | 
				
			||||
                # Each element in Input(perm) should be less than Input(x)'s dimension
 | 
				
			||||
                fluid.layers.transpose(x, perm=[3, 5, 7])
 | 
				
			||||
 | 
				
			||||
            self.assertRaises(ValueError, test_each_elem_value_check)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestTAPI(unittest.TestCase):
 | 
				
			||||
    def test_out(self):
 | 
				
			||||
        with fluid.program_guard(fluid.Program()):
 | 
				
			||||
            data = fluid.data(shape=[10], dtype="float64", name="data")
 | 
				
			||||
            data_t = paddle.t(data)
 | 
				
			||||
            place = fluid.CPUPlace()
 | 
				
			||||
            exe = fluid.Executor(place)
 | 
				
			||||
            data_np = np.random.random([10]).astype("float64")
 | 
				
			||||
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
 | 
				
			||||
            expected_result = np.transpose(data_np)
 | 
				
			||||
        self.assertEqual((result == expected_result).all(), True)
 | 
				
			||||
 | 
				
			||||
        with fluid.program_guard(fluid.Program()):
 | 
				
			||||
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
 | 
				
			||||
            data_t = paddle.t(data)
 | 
				
			||||
            place = fluid.CPUPlace()
 | 
				
			||||
            exe = fluid.Executor(place)
 | 
				
			||||
            data_np = np.random.random([10, 5]).astype("float64")
 | 
				
			||||
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
 | 
				
			||||
            expected_result = np.transpose(data_np)
 | 
				
			||||
        self.assertEqual((result == expected_result).all(), True)
 | 
				
			||||
 | 
				
			||||
        with fluid.program_guard(fluid.Program()):
 | 
				
			||||
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
 | 
				
			||||
            data_t = paddle.t(data)
 | 
				
			||||
            place = fluid.CPUPlace()
 | 
				
			||||
            exe = fluid.Executor(place)
 | 
				
			||||
            data_np = np.random.random([1, 5]).astype("float64")
 | 
				
			||||
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
 | 
				
			||||
            expected_result = np.transpose(data_np)
 | 
				
			||||
        self.assertEqual((result == expected_result).all(), True)
 | 
				
			||||
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            np_x = np.random.random([10]).astype("float64")
 | 
				
			||||
            data = fluid.dygraph.to_variable(np_x)
 | 
				
			||||
            z = paddle.t(data)
 | 
				
			||||
            np_z = z.numpy()
 | 
				
			||||
            z_expected = np.array(np.transpose(np_x))
 | 
				
			||||
        self.assertEqual((np_z == z_expected).all(), True)
 | 
				
			||||
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            np_x = np.random.random([10, 5]).astype("float64")
 | 
				
			||||
            data = fluid.dygraph.to_variable(np_x)
 | 
				
			||||
            z = paddle.t(data)
 | 
				
			||||
            np_z = z.numpy()
 | 
				
			||||
            z_expected = np.array(np.transpose(np_x))
 | 
				
			||||
        self.assertEqual((np_z == z_expected).all(), True)
 | 
				
			||||
 | 
				
			||||
        with fluid.dygraph.guard():
 | 
				
			||||
            np_x = np.random.random([1, 5]).astype("float64")
 | 
				
			||||
            data = fluid.dygraph.to_variable(np_x)
 | 
				
			||||
            z = paddle.t(data)
 | 
				
			||||
            np_z = z.numpy()
 | 
				
			||||
            z_expected = np.array(np.transpose(np_x))
 | 
				
			||||
        self.assertEqual((np_z == z_expected).all(), True)
 | 
				
			||||
 | 
				
			||||
    def test_errors(self):
 | 
				
			||||
        with fluid.program_guard(fluid.Program()):
 | 
				
			||||
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')
 | 
				
			||||
 | 
				
			||||
            def test_x_dimension_check():
 | 
				
			||||
                paddle.t(x)
 | 
				
			||||
 | 
				
			||||
            self.assertRaises(ValueError, test_x_dimension_check)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == "__main__":
 | 
				
			||||
    unittest.main()
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue