Add xpu transpose2 op.test=kunlun (#28086)
parent
a5f65d516f
commit
a5c95cd588
@ -0,0 +1,192 @@
|
|||||||
|
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#ifdef PADDLE_WITH_XPU
|
||||||
|
#include "paddle/fluid/operators/transpose_op.h"
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
bool XPUSupported(int ndims, const std::vector<int>& axis) {
|
||||||
|
/*
|
||||||
|
* XPU currently support:
|
||||||
|
* permute = {0, 2, 1}, permute = {1, 0},
|
||||||
|
* permute = {0, 2, 1, 3}, permute = {1, 0, 2},
|
||||||
|
* permute = {0, 2, 3, 1}
|
||||||
|
*/
|
||||||
|
bool is_supported = false;
|
||||||
|
std::vector<int> permute_10(2, 0);
|
||||||
|
std::vector<int> permute_102(3, 0);
|
||||||
|
std::vector<int> permute_021(3, 0);
|
||||||
|
std::vector<int> permute_210(3, 0);
|
||||||
|
std::vector<int> permute_0213(4, 0);
|
||||||
|
std::vector<int> permute_0231(4, 0);
|
||||||
|
std::vector<int> permute_0312(4, 0);
|
||||||
|
std::vector<int> permute_3201(4, 0);
|
||||||
|
permute_10[0] = 1;
|
||||||
|
permute_102[0] = 1;
|
||||||
|
permute_102[2] = 2;
|
||||||
|
permute_021[1] = 2;
|
||||||
|
permute_021[2] = 1;
|
||||||
|
permute_210[0] = 2;
|
||||||
|
permute_210[1] = 1;
|
||||||
|
permute_0213[1] = 2;
|
||||||
|
permute_0213[2] = 1;
|
||||||
|
permute_0213[3] = 3;
|
||||||
|
permute_0231[1] = 2;
|
||||||
|
permute_0231[2] = 3;
|
||||||
|
permute_0231[3] = 1;
|
||||||
|
permute_0312[1] = 3;
|
||||||
|
permute_0312[2] = 1;
|
||||||
|
permute_0312[3] = 2;
|
||||||
|
permute_3201[0] = 3;
|
||||||
|
permute_3201[1] = 2;
|
||||||
|
permute_3201[3] = 1;
|
||||||
|
switch (ndims) {
|
||||||
|
case 2:
|
||||||
|
if (axis == permute_10) {
|
||||||
|
is_supported = true;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
if ((axis == permute_021) || (axis == permute_102) ||
|
||||||
|
(axis == permute_210)) {
|
||||||
|
is_supported = true;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 4:
|
||||||
|
if ((axis == permute_0213) || (axis == permute_0231) ||
|
||||||
|
(axis == permute_0312) || (axis == permute_3201)) {
|
||||||
|
is_supported = true;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
PADDLE_THROW(platform::errors::Unimplemented(
|
||||||
|
"Tensors with rank only 2, 3 and 4 are supported on XPU"));
|
||||||
|
}
|
||||||
|
return is_supported;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class TransposeXPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto x = context.Input<framework::Tensor>("X");
|
||||||
|
auto out = context.Output<framework::Tensor>("Out");
|
||||||
|
// axis is permute
|
||||||
|
auto axis = context.Attr<std::vector<int>>("axis");
|
||||||
|
int ndims = axis.size();
|
||||||
|
const auto x_dims = x->dims();
|
||||||
|
|
||||||
|
const T* x_data = x->data<T>();
|
||||||
|
T* y_data = out->mutable_data<T>(context.GetPlace());
|
||||||
|
if (!XPUSupported(ndims, axis)) {
|
||||||
|
VLOG(0) << "XPU does not support the permute, try to do on cpu";
|
||||||
|
framework::Tensor x_cpu;
|
||||||
|
framework::Tensor out_cpu;
|
||||||
|
auto x_cpu_data = x_cpu.mutable_data<T>(x->dims(), platform::CPUPlace());
|
||||||
|
auto out_cpu_data =
|
||||||
|
out_cpu.mutable_data<T>(out->dims(), platform::CPUPlace());
|
||||||
|
memory::Copy(platform::CPUPlace(), reinterpret_cast<void*>(x_cpu_data),
|
||||||
|
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
|
||||||
|
(const void*)x_data, x->numel() * sizeof(T));
|
||||||
|
|
||||||
|
const platform::CPUDeviceContext* cpu_dev_ctx =
|
||||||
|
static_cast<const platform::CPUDeviceContext*>(
|
||||||
|
platform::DeviceContextPool::Instance().Get(
|
||||||
|
platform::CPUPlace()));
|
||||||
|
TransCompute<platform::CPUDeviceContext, T>(ndims, *cpu_dev_ctx, x_cpu,
|
||||||
|
&out_cpu, axis);
|
||||||
|
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
|
||||||
|
reinterpret_cast<void*>(y_data), platform::CPUPlace(),
|
||||||
|
(const void*)out_cpu_data, out->numel() * sizeof(T));
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int> x_shape_host(ndims, 0);
|
||||||
|
for (int i = 0; i < ndims; ++i) {
|
||||||
|
x_shape_host[i] = x_dims[i];
|
||||||
|
}
|
||||||
|
int* permute_host = axis.data();
|
||||||
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||||
|
int r = xpu::transpose(dev_ctx.x_context(), x_data, y_data,
|
||||||
|
x_shape_host.data(), permute_host, ndims);
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
r, xpu::Error_t::SUCCESS,
|
||||||
|
platform::errors::External("XPU kernel error! error code=%d", r));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class TransposeGradXPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* out_grad =
|
||||||
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* x_grad =
|
||||||
|
context.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||||
|
if (!x_grad) return;
|
||||||
|
|
||||||
|
x_grad->mutable_data<T>(context.GetPlace());
|
||||||
|
std::vector<int> axis = context.Attr<std::vector<int>>("axis");
|
||||||
|
std::vector<int> reversed_axis(axis);
|
||||||
|
for (size_t i = 0; i < axis.size(); i++) {
|
||||||
|
reversed_axis[axis[i]] = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
int ndims = axis.size();
|
||||||
|
if (!XPUSupported(ndims, reversed_axis)) {
|
||||||
|
PADDLE_THROW(
|
||||||
|
platform::errors::Unimplemented("XPU does not support the permute"));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int> out_shape_host(ndims, 0);
|
||||||
|
for (int i = 0; i < ndims; ++i) {
|
||||||
|
out_shape_host[i] = out_grad->dims()[i];
|
||||||
|
}
|
||||||
|
int* permute_host = reversed_axis.data();
|
||||||
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||||
|
int r = xpu::transpose(dev_ctx.x_context(), out_grad->data<T>(),
|
||||||
|
x_grad->data<T>(), out_shape_host.data(),
|
||||||
|
permute_host, ndims);
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
r, xpu::Error_t::SUCCESS,
|
||||||
|
platform::errors::External("XPU kernel error! error code=%d", r));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
transpose,
|
||||||
|
ops::TransposeXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
transpose_grad,
|
||||||
|
ops::TransposeGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
transpose2,
|
||||||
|
ops::TransposeXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
transpose2_grad,
|
||||||
|
ops::TransposeGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||||
|
|
||||||
|
#endif // PADDLE_WITH_XPU
|
||||||
@ -0,0 +1,230 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import sys
|
||||||
|
|
||||||
|
sys.path.append("..")
|
||||||
|
from op_test import OpTest
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
from paddle.fluid import compiler, Program, program_guard
|
||||||
|
|
||||||
|
|
||||||
|
class TestXPUTransposeOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.init_op_type()
|
||||||
|
self.initTestCase()
|
||||||
|
self.inputs = {'X': np.random.random(self.shape).astype("float64")}
|
||||||
|
self.attrs = {
|
||||||
|
'axis': list(self.axis),
|
||||||
|
'use_mkldnn': False,
|
||||||
|
'use_xpu': True
|
||||||
|
}
|
||||||
|
self.outputs = {
|
||||||
|
'XShape': np.random.random(self.shape).astype("float64"),
|
||||||
|
'Out': self.inputs['X'].transpose(self.axis)
|
||||||
|
}
|
||||||
|
|
||||||
|
def init_op_type(self):
|
||||||
|
self.op_type = "transpose2"
|
||||||
|
self.use_mkldnn = False
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
if paddle.is_compiled_with_xpu():
|
||||||
|
paddle.enable_static()
|
||||||
|
place = paddle.XPUPlace(0)
|
||||||
|
self.check_output_with_place(place=place, no_check_set=['XShape'])
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
if paddle.is_compiled_with_xpu():
|
||||||
|
paddle.enable_static()
|
||||||
|
place = paddle.XPUPlace(0)
|
||||||
|
self.check_grad_with_place(place, ['X'], 'Out')
|
||||||
|
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (3, 40)
|
||||||
|
self.axis = (1, 0)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase0(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (100, )
|
||||||
|
self.axis = (0, )
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase1(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (3, 4, 10)
|
||||||
|
self.axis = (0, 2, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase2(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 3, 4, 5)
|
||||||
|
self.axis = (0, 2, 3, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase3(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 3, 4, 5, 6)
|
||||||
|
self.axis = (4, 2, 3, 1, 0)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase4(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 3, 4, 5, 6, 1)
|
||||||
|
self.axis = (4, 2, 3, 1, 0, 5)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase5(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 16, 96)
|
||||||
|
self.axis = (0, 2, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase6(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 10, 12, 16)
|
||||||
|
self.axis = (3, 1, 2, 0)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase7(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 10, 2, 16)
|
||||||
|
self.axis = (0, 1, 3, 2)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase8(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
|
||||||
|
self.axis = (0, 1, 3, 2, 4, 5, 6, 7)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase9(TestXPUTransposeOp):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
|
||||||
|
self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
|
||||||
|
|
||||||
|
|
||||||
|
class TestTransposeOpError(unittest.TestCase):
|
||||||
|
def test_errors(self):
|
||||||
|
with program_guard(Program(), Program()):
|
||||||
|
x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
|
||||||
|
|
||||||
|
def test_x_Variable_check():
|
||||||
|
# the Input(x)'s type must be Variable
|
||||||
|
fluid.layers.transpose("not_variable", perm=[1, 0, 2])
|
||||||
|
|
||||||
|
self.assertRaises(TypeError, test_x_Variable_check)
|
||||||
|
|
||||||
|
def test_x_dtype_check():
|
||||||
|
# the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
|
||||||
|
x1 = fluid.layers.data(
|
||||||
|
name='x1', shape=[10, 5, 3], dtype='bool')
|
||||||
|
fluid.layers.transpose(x1, perm=[1, 0, 2])
|
||||||
|
|
||||||
|
self.assertRaises(TypeError, test_x_dtype_check)
|
||||||
|
|
||||||
|
def test_perm_list_check():
|
||||||
|
# Input(perm)'s type must be list
|
||||||
|
fluid.layers.transpose(x, perm="[1, 0, 2]")
|
||||||
|
|
||||||
|
self.assertRaises(TypeError, test_perm_list_check)
|
||||||
|
|
||||||
|
def test_perm_length_and_x_dim_check():
|
||||||
|
# Input(perm) is the permutation of dimensions of Input(input)
|
||||||
|
# its length should be equal to dimensions of Input(input)
|
||||||
|
fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, test_perm_length_and_x_dim_check)
|
||||||
|
|
||||||
|
def test_each_elem_value_check():
|
||||||
|
# Each element in Input(perm) should be less than Input(x)'s dimension
|
||||||
|
fluid.layers.transpose(x, perm=[3, 5, 7])
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, test_each_elem_value_check)
|
||||||
|
|
||||||
|
|
||||||
|
class TestTAPI(unittest.TestCase):
|
||||||
|
def test_out(self):
|
||||||
|
with fluid.program_guard(fluid.Program()):
|
||||||
|
data = fluid.data(shape=[10], dtype="float64", name="data")
|
||||||
|
data_t = paddle.t(data)
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
data_np = np.random.random([10]).astype("float64")
|
||||||
|
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
|
||||||
|
expected_result = np.transpose(data_np)
|
||||||
|
self.assertEqual((result == expected_result).all(), True)
|
||||||
|
|
||||||
|
with fluid.program_guard(fluid.Program()):
|
||||||
|
data = fluid.data(shape=[10, 5], dtype="float64", name="data")
|
||||||
|
data_t = paddle.t(data)
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
data_np = np.random.random([10, 5]).astype("float64")
|
||||||
|
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
|
||||||
|
expected_result = np.transpose(data_np)
|
||||||
|
self.assertEqual((result == expected_result).all(), True)
|
||||||
|
|
||||||
|
with fluid.program_guard(fluid.Program()):
|
||||||
|
data = fluid.data(shape=[1, 5], dtype="float64", name="data")
|
||||||
|
data_t = paddle.t(data)
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
data_np = np.random.random([1, 5]).astype("float64")
|
||||||
|
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
|
||||||
|
expected_result = np.transpose(data_np)
|
||||||
|
self.assertEqual((result == expected_result).all(), True)
|
||||||
|
|
||||||
|
with fluid.dygraph.guard():
|
||||||
|
np_x = np.random.random([10]).astype("float64")
|
||||||
|
data = fluid.dygraph.to_variable(np_x)
|
||||||
|
z = paddle.t(data)
|
||||||
|
np_z = z.numpy()
|
||||||
|
z_expected = np.array(np.transpose(np_x))
|
||||||
|
self.assertEqual((np_z == z_expected).all(), True)
|
||||||
|
|
||||||
|
with fluid.dygraph.guard():
|
||||||
|
np_x = np.random.random([10, 5]).astype("float64")
|
||||||
|
data = fluid.dygraph.to_variable(np_x)
|
||||||
|
z = paddle.t(data)
|
||||||
|
np_z = z.numpy()
|
||||||
|
z_expected = np.array(np.transpose(np_x))
|
||||||
|
self.assertEqual((np_z == z_expected).all(), True)
|
||||||
|
|
||||||
|
with fluid.dygraph.guard():
|
||||||
|
np_x = np.random.random([1, 5]).astype("float64")
|
||||||
|
data = fluid.dygraph.to_variable(np_x)
|
||||||
|
z = paddle.t(data)
|
||||||
|
np_z = z.numpy()
|
||||||
|
z_expected = np.array(np.transpose(np_x))
|
||||||
|
self.assertEqual((np_z == z_expected).all(), True)
|
||||||
|
|
||||||
|
def test_errors(self):
|
||||||
|
with fluid.program_guard(fluid.Program()):
|
||||||
|
x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')
|
||||||
|
|
||||||
|
def test_x_dimension_check():
|
||||||
|
paddle.t(x)
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, test_x_dimension_check)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
||||||
Loading…
Reference in new issue