Add amp to fleet meta optimizer, test=develop (#25770)
parent
9e9a569dae
commit
a6c87fd091
@ -0,0 +1,63 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
import paddle.fluid.contrib.mixed_precision as mixed_precision
|
||||
from .meta_optimizer_base import MetaOptimizerBase
|
||||
|
||||
__all__ = ["AMPOptimizer"]
|
||||
|
||||
|
||||
class AMPOptimizer(MetaOptimizerBase):
|
||||
def __init__(self, optimizer):
|
||||
super(AMPOptimizer, self).__init__(optimizer)
|
||||
self.inner_opt = optimizer
|
||||
self.amp_opt = None
|
||||
# we do not allow meta optimizer to be inner optimizer currently
|
||||
self.meta_optimizers_white_list = []
|
||||
|
||||
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
|
||||
user_defined_strategy):
|
||||
super(AMPOptimizer, self)._set_basic_info(
|
||||
loss, role_maker, user_defined_optimizer, user_defined_strategy)
|
||||
|
||||
def _can_apply(self):
|
||||
if self.user_defined_strategy.amp:
|
||||
return True
|
||||
return False
|
||||
|
||||
def _disable_strategy(self, dist_strategy):
|
||||
dist_strategy.amp = False
|
||||
|
||||
def minimize_impl(self,
|
||||
loss,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None):
|
||||
if self.amp_opt is None:
|
||||
config = self.user_defined_strategy.amp_configs
|
||||
custom_white_list = set(config['custom_white_list'])
|
||||
custom_black_list = set(config['custom_black_list'])
|
||||
custom_black_varnames = set(config['custom_black_varnames'])
|
||||
amp_lists = mixed_precision.AutoMixedPrecisionLists(
|
||||
custom_white_list, custom_black_list, custom_black_varnames)
|
||||
|
||||
self.amp_opt = mixed_precision.decorate(
|
||||
self.inner_opt, amp_lists, config['init_loss_scaling'],
|
||||
config['incr_every_n_steps'], config['decr_every_n_nan_or_inf'],
|
||||
config['incr_ratio'], config['decr_ratio'],
|
||||
config['use_dynamic_loss_scaling'])
|
||||
|
||||
optimize_ops, params_grads = \
|
||||
self.amp_opt.minimize(loss, startup_program,
|
||||
parameter_list, no_grad_set)
|
||||
return optimize_ops, params_grads
|
@ -0,0 +1,64 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle
|
||||
import os
|
||||
|
||||
|
||||
class TestFleetAMPOptimizer(unittest.TestCase):
|
||||
def setUp(self):
|
||||
os.environ["PADDLE_TRAINER_ID"] = "0"
|
||||
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
|
||||
|
||||
def test_amp_optimizer(self):
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
strategy.amp = True
|
||||
strategy.amp_configs = {
|
||||
"init_loss_scaling": 32768,
|
||||
"decr_every_n_nan_or_inf": 2,
|
||||
"incr_every_n_steps": 1000,
|
||||
"incr_ratio": 2.0,
|
||||
"use_dynamic_loss_scaling": True,
|
||||
"decr_ratio": 0.5,
|
||||
"custom_white_list": ['softmax'],
|
||||
"custom_black_list": ['tanh'],
|
||||
}
|
||||
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
ops = [op.type for op in avg_cost.block.ops]
|
||||
self.assertIn('cast', ops)
|
||||
self.assertIn('isfinite', ops)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue