parent
6cb78c6e2b
commit
a6f25f3d2a
@ -0,0 +1,8 @@
|
||||
import os
|
||||
|
||||
__all__ = ['DATA_HOME']
|
||||
|
||||
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
|
||||
|
||||
if not os.path.exists(DATA_HOME):
|
||||
os.makedirs(DATA_HOME)
|
||||
@ -0,0 +1,81 @@
|
||||
import random
|
||||
import nltk
|
||||
import numpy as np
|
||||
from nltk.corpus import movie_reviews
|
||||
from config import DATA_HOME
|
||||
|
||||
__all__ = ['train', 'test', 'get_label_dict', 'get_word_dict']
|
||||
SPLIT_NUM = 800
|
||||
TOTAL_DATASET_NUM = 1000
|
||||
|
||||
|
||||
def get_label_dict():
|
||||
label_dict = {'neg': 0, 'pos': 1}
|
||||
return label_dict
|
||||
|
||||
|
||||
def is_download_data():
|
||||
try:
|
||||
nltk.data.path.append(DATA_HOME)
|
||||
movie_reviews.categories()
|
||||
except LookupError:
|
||||
print "dd"
|
||||
nltk.download('movie_reviews', download_dir=DATA_HOME)
|
||||
nltk.data.path.append(DATA_HOME)
|
||||
|
||||
|
||||
def get_word_dict():
|
||||
words_freq_sorted = list()
|
||||
is_download_data()
|
||||
words_freq = nltk.FreqDist(w.lower() for w in movie_reviews.words())
|
||||
words_sort_list = words_freq.items()
|
||||
words_sort_list.sort(cmp=lambda a, b: b[1] - a[1])
|
||||
print words_sort_list
|
||||
for index, word in enumerate(words_sort_list):
|
||||
words_freq_sorted.append(word[0])
|
||||
return words_freq_sorted
|
||||
|
||||
|
||||
def load_sentiment_data():
|
||||
label_dict = get_label_dict()
|
||||
is_download_data()
|
||||
words_freq = nltk.FreqDist(w.lower() for w in movie_reviews.words())
|
||||
data_set = [([words_freq[word]
|
||||
for word in movie_reviews.words(fileid)], label_dict[category])
|
||||
for category in movie_reviews.categories()
|
||||
for fileid in movie_reviews.fileids(category)]
|
||||
random.shuffle(data_set)
|
||||
return data_set
|
||||
|
||||
|
||||
data_set = load_sentiment_data()
|
||||
|
||||
|
||||
def reader_creator(data_type):
|
||||
if data_type == 'train':
|
||||
for each in data_set[0:SPLIT_NUM]:
|
||||
train_sentences = np.array(each[0], dtype=np.int32)
|
||||
train_label = np.array(each[1], dtype=np.int8)
|
||||
yield train_sentences, train_label
|
||||
else:
|
||||
for each in data_set[SPLIT_NUM:]:
|
||||
test_sentences = np.array(each[0], dtype=np.int32)
|
||||
test_label = np.array(each[1], dtype=np.int8)
|
||||
yield test_sentences, test_label
|
||||
|
||||
|
||||
def train():
|
||||
return reader_creator('train')
|
||||
|
||||
|
||||
def test():
|
||||
return reader_creator('test')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
for train in train():
|
||||
print "train"
|
||||
print train
|
||||
for test in test():
|
||||
print "test"
|
||||
print test
|
||||
Loading…
Reference in new issue