|
|
|
@ -20,7 +20,8 @@ limitations under the License. */
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
|
|
TEST(Im2ColFunctor, real) {
|
|
|
|
|
template <DeviceType Device, class T>
|
|
|
|
|
void TestIm2ColFunctor() {
|
|
|
|
|
for (size_t channels : {1, 5, 32}) {
|
|
|
|
|
for (size_t inputHeight : {5, 33, 100}) {
|
|
|
|
|
for (size_t inputWidth : {5, 32, 96}) {
|
|
|
|
@ -50,16 +51,18 @@ TEST(Im2ColFunctor, real) {
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth});
|
|
|
|
|
|
|
|
|
|
VectorPtr input = Vector::create(imShape.getElements(), false);
|
|
|
|
|
size_t height = channels * filterHeight * filterWidth;
|
|
|
|
|
size_t width = outputHeight * outputWidth;
|
|
|
|
|
VectorPtr input1 = Vector::create(imShape.getElements(), false);
|
|
|
|
|
VectorPtr input2 = Vector::create(imShape.getElements(), false);
|
|
|
|
|
MatrixPtr output1 = Matrix::create(height, width, false, false);
|
|
|
|
|
MatrixPtr output2 = Matrix::create(width, height, false, false);
|
|
|
|
|
Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, real> im2col1;
|
|
|
|
|
Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, real> im2col2;
|
|
|
|
|
input1->uniform(0.001, 1);
|
|
|
|
|
input2->copyFrom(*input1);
|
|
|
|
|
|
|
|
|
|
input->uniform(0.001, 1);
|
|
|
|
|
im2col1(input->getData(),
|
|
|
|
|
Im2ColFunctor<kCFO, Device, T> im2Col1;
|
|
|
|
|
Im2ColFunctor<kOCF, Device, T> im2Col2;
|
|
|
|
|
im2Col1(input1->getData(),
|
|
|
|
|
imShape,
|
|
|
|
|
output1->getData(),
|
|
|
|
|
colShape1,
|
|
|
|
@ -67,7 +70,7 @@ TEST(Im2ColFunctor, real) {
|
|
|
|
|
stride,
|
|
|
|
|
padding,
|
|
|
|
|
padding);
|
|
|
|
|
im2col2(input->getData(),
|
|
|
|
|
im2Col2(input2->getData(),
|
|
|
|
|
imShape,
|
|
|
|
|
output2->getData(),
|
|
|
|
|
colShape2,
|
|
|
|
@ -76,27 +79,32 @@ TEST(Im2ColFunctor, real) {
|
|
|
|
|
padding,
|
|
|
|
|
padding);
|
|
|
|
|
|
|
|
|
|
// The transposition of the result of ColFormat == kCFO
|
|
|
|
|
// is equal to the result of ColFormat == kOCF.
|
|
|
|
|
MatrixPtr test;
|
|
|
|
|
output2->transpose(test, true);
|
|
|
|
|
autotest::TensorCheckErr(*output1, *test);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
TEST(Col2ImFunctor, real) {
|
|
|
|
|
for (size_t channels : {1, 5, 32}) {
|
|
|
|
|
for (size_t inputHeight : {5, 33, 100}) {
|
|
|
|
|
for (size_t inputWidth : {5, 32, 96}) {
|
|
|
|
|
for (size_t filterHeight : {1, 5}) {
|
|
|
|
|
for (size_t filterWidth : {3, 7}) {
|
|
|
|
|
for (size_t stride : {1, 2}) {
|
|
|
|
|
for (size_t padding : {0, 1}) {
|
|
|
|
|
Col2ImFunctor<kCFO, Device, T> col2Im1;
|
|
|
|
|
Col2ImFunctor<kOCF, Device, T> col2Im2;
|
|
|
|
|
col2Im1(input1->getData(),
|
|
|
|
|
imShape,
|
|
|
|
|
output1->getData(),
|
|
|
|
|
colShape1,
|
|
|
|
|
stride,
|
|
|
|
|
stride,
|
|
|
|
|
padding,
|
|
|
|
|
padding);
|
|
|
|
|
col2Im2(input2->getData(),
|
|
|
|
|
imShape,
|
|
|
|
|
output2->getData(),
|
|
|
|
|
colShape2,
|
|
|
|
|
stride,
|
|
|
|
|
stride,
|
|
|
|
|
padding,
|
|
|
|
|
padding);
|
|
|
|
|
|
|
|
|
|
autotest::TensorCheckErr(*input1, *input2);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -105,6 +113,13 @@ TEST(Col2ImFunctor, real) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Im2ColFunctor, CPU) { TestIm2ColFunctor<DEVICE_TYPE_CPU, float>(); }
|
|
|
|
|
|
|
|
|
|
#ifndef PADDLE_ONLY_CPU
|
|
|
|
|
|
|
|
|
|
TEST(Im2ColFunctor, GPU) { TestIm2ColFunctor<DEVICE_TYPE_GPU, float>(); }
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
} // namespace paddle
|
|
|
|
|