parent
86a679b0c4
commit
c761010603
@ -0,0 +1,110 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Im2Col.h"
|
||||
#include <gtest/gtest.h>
|
||||
#include "Function.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
#include "paddle/math/tests/TensorCheck.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
TEST(Im2ColFunctor, real) {
|
||||
for (size_t channels : {1, 5, 32}) {
|
||||
for (size_t inputHeight : {5, 33, 100}) {
|
||||
for (size_t inputWidth : {5, 32, 96}) {
|
||||
for (size_t filterHeight : {1, 5}) {
|
||||
for (size_t filterWidth : {3, 7}) {
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
if (inputHeight <= filterHeight || inputWidth <= filterWidth)
|
||||
break;
|
||||
if (padding >= filterHeight || padding >= filterWidth) break;
|
||||
size_t outputHeight =
|
||||
(inputHeight - filterHeight + 2 * padding + stride) /
|
||||
stride;
|
||||
size_t outputWidth =
|
||||
(inputWidth - filterWidth + 2 * padding + stride) / stride;
|
||||
|
||||
TensorShape imShape =
|
||||
TensorShape({channels, inputHeight, inputWidth});
|
||||
TensorShape colShape1 = TensorShape({channels,
|
||||
filterHeight,
|
||||
filterWidth,
|
||||
outputHeight,
|
||||
outputWidth});
|
||||
TensorShape colShape2 = TensorShape({outputHeight,
|
||||
outputWidth,
|
||||
channels,
|
||||
filterHeight,
|
||||
filterWidth});
|
||||
|
||||
VectorPtr input = Vector::create(imShape.getElements(), false);
|
||||
size_t height = channels * filterHeight * filterWidth;
|
||||
size_t width = outputHeight * outputWidth;
|
||||
MatrixPtr output1 = Matrix::create(height, width, false, false);
|
||||
MatrixPtr output2 = Matrix::create(width, height, false, false);
|
||||
Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, real> im2col1;
|
||||
Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, real> im2col2;
|
||||
|
||||
input->uniform(0.001, 1);
|
||||
im2col1(input->getData(),
|
||||
imShape,
|
||||
output1->getData(),
|
||||
colShape1,
|
||||
stride,
|
||||
stride,
|
||||
padding,
|
||||
padding);
|
||||
im2col2(input->getData(),
|
||||
imShape,
|
||||
output2->getData(),
|
||||
colShape2,
|
||||
stride,
|
||||
stride,
|
||||
padding,
|
||||
padding);
|
||||
|
||||
MatrixPtr test;
|
||||
output2->transpose(test, true);
|
||||
autotest::TensorCheckErr(*output1, *test);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
TEST(Col2ImFunctor, real) {
|
||||
for (size_t channels : {1, 5, 32}) {
|
||||
for (size_t inputHeight : {5, 33, 100}) {
|
||||
for (size_t inputWidth : {5, 32, 96}) {
|
||||
for (size_t filterHeight : {1, 5}) {
|
||||
for (size_t filterWidth : {3, 7}) {
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue