add clip_by_norm on kunlun, *test=kunlun (#30862)
parent
302427170f
commit
ac2e2e6b7f
@ -0,0 +1,74 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include "paddle/fluid/operators/clip_by_norm_op.h"
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class XPUClipByNormKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto max_norm = context.Attr<T>("max_norm");
|
||||
auto in_var = context.InputVar("X");
|
||||
|
||||
Tensor* output = nullptr;
|
||||
const Tensor* input = nullptr;
|
||||
if (in_var->IsType<framework::LoDTensor>()) {
|
||||
input = context.Input<Tensor>("X");
|
||||
|
||||
output = context.Output<Tensor>("Out");
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
} else {
|
||||
PADDLE_THROW(platform::errors::InvalidArgument(
|
||||
"Invalid input variable type, only support LodTensor"
|
||||
"type, but got type is %s.",
|
||||
framework::ToTypeName(in_var->Type())));
|
||||
}
|
||||
|
||||
PADDLE_ENFORCE_NOT_NULL(input,
|
||||
platform::errors::InvalidArgument(
|
||||
"Input(X) of ClipByNormOp should not be null. "
|
||||
"Please check if it is created correctly."));
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
const auto& x_dims = input->dims();
|
||||
std::vector<int> xshape(x_dims.size());
|
||||
std::vector<int> rdims(x_dims.size());
|
||||
for (int i = 0; i < x_dims.size(); i++) {
|
||||
xshape[i] = x_dims[i];
|
||||
rdims[i] = i;
|
||||
}
|
||||
int r = xpu::clip_by_norm<T>(dev_ctx.x_context(), input->data<T>(),
|
||||
output->data<T>(), max_norm, xshape, rdims);
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, XPU_SUCCESS,
|
||||
platform::errors::External("XPU API(clip_by_norm) return "
|
||||
"wrong value[%d], please check whether "
|
||||
"Baidu Kunlun Card is properly installed.",
|
||||
r));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
clip_by_norm,
|
||||
ops::XPUClipByNormKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif // PADDLE_WITH_XPU
|
@ -0,0 +1,77 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
from op_test_xpu import OpTest, XPUOpTest
|
||||
import paddle
|
||||
from paddle.fluid import Program, program_guard
|
||||
|
||||
|
||||
class TestXPUClipByNormOp(XPUOpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "clip_by_norm"
|
||||
self.dtype = np.float32
|
||||
self.use_xpu = True
|
||||
self.max_relative_error = 0.006
|
||||
self.initTestCase()
|
||||
input = np.random.random(self.shape).astype("float32")
|
||||
input[np.abs(input) < self.max_relative_error] = 0.5
|
||||
self.inputs = {'X': input, }
|
||||
self.attrs = {}
|
||||
self.attrs['max_norm'] = self.max_norm
|
||||
norm = np.sqrt(np.sum(np.square(input)))
|
||||
if norm > self.max_norm:
|
||||
output = self.max_norm * input / norm
|
||||
else:
|
||||
output = input
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
paddle.enable_static()
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def initTestCase(self):
|
||||
self.shape = (100, )
|
||||
self.max_norm = 1.0
|
||||
|
||||
|
||||
class TestCase1(TestXPUClipByNormOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (100, )
|
||||
self.max_norm = 1e20
|
||||
|
||||
|
||||
class TestCase2(TestXPUClipByNormOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (16, 16)
|
||||
self.max_norm = 0.1
|
||||
|
||||
|
||||
class TestCase3(TestXPUClipByNormOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (4, 8, 16)
|
||||
self.max_norm = 1.0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue