|
|
@ -73,8 +73,6 @@ from paddle.trainer_config_helpers.config_parser_utils import \
|
|
|
|
parse_network_config as __parse__
|
|
|
|
parse_network_config as __parse__
|
|
|
|
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
|
|
|
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
|
|
|
|
|
|
|
|
|
|
|
import activation
|
|
|
|
|
|
|
|
import attr
|
|
|
|
|
|
|
|
import data_type
|
|
|
|
import data_type
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
__all__ = [
|
|
|
@ -101,11 +99,10 @@ def parse_network(*outputs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Layer(object):
|
|
|
|
class Layer(object):
|
|
|
|
def __init__(self, name, parent_layers, step_input=None):
|
|
|
|
def __init__(self, name, parent_layers):
|
|
|
|
assert isinstance(parent_layers, dict)
|
|
|
|
assert isinstance(parent_layers, dict)
|
|
|
|
assert isinstance(name, basestring)
|
|
|
|
assert isinstance(name, basestring)
|
|
|
|
self.name = name
|
|
|
|
self.name = name
|
|
|
|
self.step_input = step_input
|
|
|
|
|
|
|
|
self.__parent_layers__ = parent_layers
|
|
|
|
self.__parent_layers__ = parent_layers
|
|
|
|
|
|
|
|
|
|
|
|
def to_proto(self, context):
|
|
|
|
def to_proto(self, context):
|
|
|
@ -121,12 +118,13 @@ class Layer(object):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
v1_layer = map(lambda x: x.to_proto(context=context),
|
|
|
|
v1_layer = map(lambda x: x.to_proto(context=context),
|
|
|
|
self.__parent_layers__[layer_name])
|
|
|
|
self.__parent_layers__[layer_name])
|
|
|
|
if layer_name == "input" and self.step_input is not None:
|
|
|
|
|
|
|
|
v1_layer.insert(0, self.step_input)
|
|
|
|
|
|
|
|
kwargs[layer_name] = v1_layer
|
|
|
|
kwargs[layer_name] = v1_layer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.name is None:
|
|
|
|
|
|
|
|
return self.to_proto_impl(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
# memory may have the same name with some layer
|
|
|
|
# memory may have the same name with some layer
|
|
|
|
if isinstance(self, MemoryV2):
|
|
|
|
if isinstance(self, MemoryV2) or isinstance(self, LayerOutputV2):
|
|
|
|
return self.to_proto_impl(**kwargs)
|
|
|
|
return self.to_proto_impl(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
if self.name not in context:
|
|
|
|
if self.name not in context:
|
|
|
@ -144,7 +142,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
|
|
|
|
wrapper = None
|
|
|
|
wrapper = None
|
|
|
|
|
|
|
|
|
|
|
|
class V2LayerImpl(Layer):
|
|
|
|
class V2LayerImpl(Layer):
|
|
|
|
def __init__(self, name=None, step_input=None, **kwargs):
|
|
|
|
def __init__(self, name=None, **kwargs):
|
|
|
|
parent_layers = dict()
|
|
|
|
parent_layers = dict()
|
|
|
|
other_kwargs = dict()
|
|
|
|
other_kwargs = dict()
|
|
|
|
for pname in parent_names:
|
|
|
|
for pname in parent_names:
|
|
|
@ -155,7 +153,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
|
|
|
|
if key not in parent_names:
|
|
|
|
if key not in parent_names:
|
|
|
|
other_kwargs[key] = kwargs[key]
|
|
|
|
other_kwargs[key] = kwargs[key]
|
|
|
|
|
|
|
|
|
|
|
|
super(V2LayerImpl, self).__init__(name, parent_layers, step_input)
|
|
|
|
super(V2LayerImpl, self).__init__(name, parent_layers)
|
|
|
|
self.__other_kwargs__ = other_kwargs
|
|
|
|
self.__other_kwargs__ = other_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
if wrapper is not None:
|
|
|
|
if wrapper is not None:
|
|
|
@ -214,6 +212,48 @@ class MemoryV2(Layer):
|
|
|
|
return conf_helps.memory(name=self.name, size=self.size, **args)
|
|
|
|
return conf_helps.memory(name=self.name, size=self.size, **args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LayerOutputV2(Layer):
|
|
|
|
|
|
|
|
def __init__(self, layer_output):
|
|
|
|
|
|
|
|
assert isinstance(layer_output, conf_helps.LayerOutput)
|
|
|
|
|
|
|
|
self.layer_output = layer_output
|
|
|
|
|
|
|
|
super(LayerOutputV2, self).__init__(
|
|
|
|
|
|
|
|
name=layer_output.name, parent_layers=dict())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_proto_impl(self):
|
|
|
|
|
|
|
|
return self.layer_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RecurrentGroupV2(Layer):
|
|
|
|
|
|
|
|
def __init__(self, name, **kwargs):
|
|
|
|
|
|
|
|
self.__parent_names__ = ['input']
|
|
|
|
|
|
|
|
other_kwargs = dict()
|
|
|
|
|
|
|
|
parent_layers = dict()
|
|
|
|
|
|
|
|
for pname in self.__parent_names__:
|
|
|
|
|
|
|
|
if kwargs.has_key(pname):
|
|
|
|
|
|
|
|
parent_layers[pname] = kwargs[pname]
|
|
|
|
|
|
|
|
for key in kwargs.keys():
|
|
|
|
|
|
|
|
if key not in self.__parent_names__:
|
|
|
|
|
|
|
|
other_kwargs[key] = kwargs[key]
|
|
|
|
|
|
|
|
self.__kwargs__ = other_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super(RecurrentGroupV2, self).__init__(
|
|
|
|
|
|
|
|
name=name, parent_layers=parent_layers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_proto_impl(self, **kwargs):
|
|
|
|
|
|
|
|
def in_args_converter(in_args):
|
|
|
|
|
|
|
|
if not isinstance(in_args, collections.Sequence):
|
|
|
|
|
|
|
|
in_args = [in_args]
|
|
|
|
|
|
|
|
return [LayerOutputV2(input) for input in in_args]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args = dict()
|
|
|
|
|
|
|
|
for each in kwargs:
|
|
|
|
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
|
|
|
|
for each in self.__kwargs__:
|
|
|
|
|
|
|
|
args[each] = self.__kwargs__[each]
|
|
|
|
|
|
|
|
return conf_helps.recurrent_group(
|
|
|
|
|
|
|
|
name=self.name, in_args_converter=in_args_converter, **args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = DataLayerV2
|
|
|
|
data = DataLayerV2
|
|
|
|
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
|
|
|
|
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
|
|
|
|
max_id = __convert_to_v2__(
|
|
|
|
max_id = __convert_to_v2__(
|
|
|
@ -234,8 +274,7 @@ embedding = __convert_to_v2__(
|
|
|
|
'embedding_layer', name_prefix='embedding', parent_names=['input'])
|
|
|
|
'embedding_layer', name_prefix='embedding', parent_names=['input'])
|
|
|
|
last_seq = __convert_to_v2__(
|
|
|
|
last_seq = __convert_to_v2__(
|
|
|
|
'last_seq', name_prefix='last_seq', parent_names=['input'])
|
|
|
|
'last_seq', name_prefix='last_seq', parent_names=['input'])
|
|
|
|
recurrent_group = __convert_to_v2__(
|
|
|
|
recurrent_group = RecurrentGroupV2
|
|
|
|
'recurrent_group', name_prefix='recurrent_layer', parent_names=['input'])
|
|
|
|
|
|
|
|
memory = MemoryV2
|
|
|
|
memory = MemoryV2
|
|
|
|
|
|
|
|
|
|
|
|
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
|
|
|
|
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
|
|
|
|