commit
af47bf58c6
@ -0,0 +1,126 @@
|
|||||||
|
# /usr/bin/env python
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
The script fetch and preprocess movie_reviews data set
|
||||||
|
|
||||||
|
that provided by NLTK
|
||||||
|
"""
|
||||||
|
|
||||||
|
import common
|
||||||
|
import collections
|
||||||
|
import nltk
|
||||||
|
import numpy as np
|
||||||
|
from itertools import chain
|
||||||
|
from nltk.corpus import movie_reviews
|
||||||
|
|
||||||
|
__all__ = ['train', 'test', 'get_word_dict']
|
||||||
|
NUM_TRAINING_INSTANCES = 1600
|
||||||
|
NUM_TOTAL_INSTANCES = 2000
|
||||||
|
|
||||||
|
|
||||||
|
def download_data_if_not_yet():
|
||||||
|
"""
|
||||||
|
Download the data set, if the data set is not download.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# make sure that nltk can find the data
|
||||||
|
if common.DATA_HOME not in nltk.data.path:
|
||||||
|
nltk.data.path.append(common.DATA_HOME)
|
||||||
|
movie_reviews.categories()
|
||||||
|
except LookupError:
|
||||||
|
print "Downloading movie_reviews data set, please wait....."
|
||||||
|
nltk.download('movie_reviews', download_dir=common.DATA_HOME)
|
||||||
|
print "Download data set success....."
|
||||||
|
print "Path is " + nltk.data.find('corpora/movie_reviews').path
|
||||||
|
|
||||||
|
|
||||||
|
def get_word_dict():
|
||||||
|
"""
|
||||||
|
Sorted the words by the frequency of words which occur in sample
|
||||||
|
:return:
|
||||||
|
words_freq_sorted
|
||||||
|
"""
|
||||||
|
words_freq_sorted = list()
|
||||||
|
word_freq_dict = collections.defaultdict(int)
|
||||||
|
download_data_if_not_yet()
|
||||||
|
|
||||||
|
for category in movie_reviews.categories():
|
||||||
|
for field in movie_reviews.fileids(category):
|
||||||
|
for words in movie_reviews.words(field):
|
||||||
|
word_freq_dict[words] += 1
|
||||||
|
words_sort_list = word_freq_dict.items()
|
||||||
|
words_sort_list.sort(cmp=lambda a, b: b[1] - a[1])
|
||||||
|
for index, word in enumerate(words_sort_list):
|
||||||
|
words_freq_sorted.append((word[0], index))
|
||||||
|
return words_freq_sorted
|
||||||
|
|
||||||
|
|
||||||
|
def sort_files():
|
||||||
|
"""
|
||||||
|
Sorted the sample for cross reading the sample
|
||||||
|
:return:
|
||||||
|
files_list
|
||||||
|
"""
|
||||||
|
files_list = list()
|
||||||
|
neg_file_list = movie_reviews.fileids('neg')
|
||||||
|
pos_file_list = movie_reviews.fileids('pos')
|
||||||
|
files_list = list(chain.from_iterable(zip(neg_file_list, pos_file_list)))
|
||||||
|
return files_list
|
||||||
|
|
||||||
|
|
||||||
|
def load_sentiment_data():
|
||||||
|
"""
|
||||||
|
Load the data set
|
||||||
|
:return:
|
||||||
|
data_set
|
||||||
|
"""
|
||||||
|
data_set = list()
|
||||||
|
download_data_if_not_yet()
|
||||||
|
words_ids = dict(get_word_dict())
|
||||||
|
for sample_file in sort_files():
|
||||||
|
words_list = list()
|
||||||
|
category = 0 if 'neg' in sample_file else 1
|
||||||
|
for word in movie_reviews.words(sample_file):
|
||||||
|
words_list.append(words_ids[word.lower()])
|
||||||
|
data_set.append((words_list, category))
|
||||||
|
return data_set
|
||||||
|
|
||||||
|
|
||||||
|
def reader_creator(data):
|
||||||
|
"""
|
||||||
|
Reader creator, generate an iterator for data set
|
||||||
|
:param data:
|
||||||
|
train data set or test data set
|
||||||
|
"""
|
||||||
|
for each in data:
|
||||||
|
yield each[0], each[1]
|
||||||
|
|
||||||
|
|
||||||
|
def train():
|
||||||
|
"""
|
||||||
|
Default train set reader creator
|
||||||
|
"""
|
||||||
|
data_set = load_sentiment_data()
|
||||||
|
return reader_creator(data_set[0:NUM_TRAINING_INSTANCES])
|
||||||
|
|
||||||
|
|
||||||
|
def test():
|
||||||
|
"""
|
||||||
|
Default test set reader creator
|
||||||
|
"""
|
||||||
|
data_set = load_sentiment_data()
|
||||||
|
return reader_creator(data_set[NUM_TRAINING_INSTANCES:])
|
@ -0,0 +1,55 @@
|
|||||||
|
# /usr/bin/env python
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
|
||||||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import nltk
|
||||||
|
import paddle.v2.dataset.sentiment as st
|
||||||
|
from nltk.corpus import movie_reviews
|
||||||
|
|
||||||
|
|
||||||
|
class TestSentimentMethods(unittest.TestCase):
|
||||||
|
def test_get_word_dict(self):
|
||||||
|
word_dict = st.get_word_dict()[0:10]
|
||||||
|
test_word_list = [(u',', 0), (u'the', 1), (u'.', 2), (u'a', 3),
|
||||||
|
(u'and', 4), (u'of', 5), (u'to', 6), (u"'", 7),
|
||||||
|
(u'is', 8), (u'in', 9)]
|
||||||
|
for idx, each in enumerate(word_dict):
|
||||||
|
self.assertEqual(each, test_word_list[idx])
|
||||||
|
self.assertTrue("/root/.cache/paddle/dataset" in nltk.data.path)
|
||||||
|
|
||||||
|
def test_sort_files(self):
|
||||||
|
last_label = ''
|
||||||
|
for sample_file in st.sort_files():
|
||||||
|
current_label = sample_file.split("/")[0]
|
||||||
|
self.assertNotEqual(current_label, last_label)
|
||||||
|
last_label = current_label
|
||||||
|
|
||||||
|
def test_data_set(self):
|
||||||
|
data_set = st.load_sentiment_data()
|
||||||
|
last_label = -1
|
||||||
|
for each in st.test():
|
||||||
|
self.assertNotEqual(each[1], last_label)
|
||||||
|
last_label = each[1]
|
||||||
|
self.assertEqual(len(data_set), st.NUM_TOTAL_INSTANCES)
|
||||||
|
self.assertEqual(len(list(st.train())), st.NUM_TRAINING_INSTANCES)
|
||||||
|
self.assertEqual(
|
||||||
|
len(list(st.test())),
|
||||||
|
(st.NUM_TOTAL_INSTANCES - st.NUM_TRAINING_INSTANCES))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue