Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into fix-H0-GRUOp-dev

release/0.11.0
guosheng 8 years ago
commit afd1f36186

3
.gitignore vendored

@ -21,11 +21,10 @@ third_party/
cmake-build-* cmake-build-*
# generated while compiling # generated while compiling
python/paddle/v2/framework/core.so python/paddle/v2/fluid/core.so
paddle/pybind/pybind.h paddle/pybind/pybind.h
CMakeFiles CMakeFiles
cmake_install.cmake cmake_install.cmake
paddle/.timestamp paddle/.timestamp
python/paddlepaddle.egg-info/ python/paddlepaddle.egg-info/
paddle/pybind/pybind.h paddle/pybind/pybind.h
python/paddle/v2/framework/tests/tmp/*

@ -1,9 +1,7 @@
set -e set -e
function train() { function train() {
unset OMP_NUM_THREADS MKL_NUM_THREADS unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0"
topology=$1 topology=$1
layer_num=$2 layer_num=$2
bs=$3 bs=$3
@ -14,8 +12,6 @@ function train() {
elif [ $4 == "False" ]; then elif [ $4 == "False" ]; then
thread=`nproc` thread=`nproc`
# each trainer_count use only 1 core to avoid conflict # each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log" log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log"
else else
echo "Wrong input $3, use True or False." echo "Wrong input $3, use True or False."

@ -98,7 +98,7 @@ IF(NOT ${CBLAS_FOUND})
ENDIF() ENDIF()
INSTALL(CODE "execute_process( INSTALL(CODE "execute_process(
COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib
destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR} ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
)" )"
) )
INSTALL(CODE "MESSAGE(STATUS \"Installing: \" INSTALL(CODE "MESSAGE(STATUS \"Installing: \"

@ -0,0 +1,58 @@
## Evaluator Design
### The Problem
During training or serving, we provide the evaluation function to measure the model performance, e.g., accuracy, precision. In the operator based framework design, the data go through the network pipeline batch by batch. As a result, inside the operator, we only can calculate one minibatch metrics. We need to provide a mechanism to calculate the metrics for each N pass/batch the user wanted.
### Evaluator Design
Currently, every operation is expressed in the graph. we divide the evaluator process into three steps.
1. Initialize the metric state and add it into the block.
2. Calculate the statistic of the metric state in every mini-batch. The single operator is only responsible for calculating necessary statistics for one mini-batch. For example, accuracy operator only calculate a minibatch data if run once.
3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices.
### Implementation
This design is shown in python API.
Each metric operator need to caculate the metric statistic and return the batch aware states, Python side responsible for accumulate the states for each pass.
```python
class Evaluator(object):
"""
Evaluator Base class.
"""
def __init__(self, name, **kwargs):
"""
Different evaluator may has different metric states. E.g, Accuracy need two variables, total and right sample counts.
Auc need four variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives`. So every evaluator should create its needed variables and append to main_program
The initialization of Evaluator should be responsible for:
create metric states and append to the main_program
"""
pass
def _update_ops(self, input, label, **kwargs)
"""
Add mini-batch evaluator caculate operators to the main_program.
Add increment operator to accumulate the metric states.
"""
def reset(self, executor, reset_program=None):
"""
Reset metric states at the begin of each pass/user specified batch number.
Execute the reset_program to reset the states.
"""
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
Execute the eval_program and return the result.
"""
return eval_result
```

@ -1,6 +1,6 @@
digraph G { digraph G {
rnn [label="1-th level RNN" shape=box] rnn [label="1st level RNN" shape=box]
subgraph cluster0 { subgraph cluster0 {
label = "time step 0" label = "time step 0"
@ -8,7 +8,7 @@ digraph G {
sent0 [label="sentence"] sent0 [label="sentence"]
sent1 [label="sentence"] sent1 [label="sentence"]
rnn1 [label="2-th level RNN" shape=box] rnn1 [label="2nd level RNN" shape=box]
sent0 -> rnn1 sent0 -> rnn1
sent1 -> rnn1 sent1 -> rnn1
@ -20,7 +20,7 @@ digraph G {
sent2 [label="sentence"] sent2 [label="sentence"]
sent3 [label="sentence"] sent3 [label="sentence"]
rnn2 [label="2-th level RNN" shape=box] rnn2 [label="2nd level RNN" shape=box]
sent2 -> rnn2 sent2 -> rnn2
sent3 -> rnn2 sent3 -> rnn2
@ -32,7 +32,7 @@ digraph G {
sent4 [label="sentence"] sent4 [label="sentence"]
sent5 [label="sentence"] sent5 [label="sentence"]
rnn3 [label="2-th level RNN" shape=box] rnn3 [label="2nd level RNN" shape=box]
sent4 -> rnn3 sent4 -> rnn3
sent5 -> rnn3 sent5 -> rnn3

@ -1,62 +1,62 @@
# RNNOp design # RNNOp design
This document is about an RNN operator which requires that instances in a mini-batch have the same length. We will have a more flexible RNN operator. This document describes the RNN (Recurrent Neural Network) operator and how it is implemented in PaddlePaddle. The RNN op requires that all instances in a mini-batch have the same length. We will have a more flexible dynamic RNN operator in the future.
## RNN Algorithm Implementation ## RNN Algorithm Implementation
<p aligh="center"> <p align="center">
<img src="./images/rnn.jpg"/> <img src="./images/rnn.jpg"/>
</p> </p>
The above diagram shows an RNN unrolled into a full network. The above diagram shows an RNN unrolled into a full network.
There are several important concepts: There are several important concepts here:
- *step-net*: the sub-graph to run at each step, - *step-net*: the sub-graph that runs at each step.
- *memory*, $h_t$, the state of the current step, - *memory*, $h_t$, the state of the current step.
- *ex-memory*, $h_{t-1}$, the state of the previous step, - *ex-memory*, $h_{t-1}$, the state of the previous step.
- *initial memory value*, the ex-memory of the first step. - *initial memory value*, the memory of the first (initial) step.
### Step-scope ### Step-scope
There could be local variables defined in step-nets. PaddlePaddle runtime realizes these variables in *step-scopes* -- scopes created for each step. There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step.
<p aligh="center"> <p align="center">
<img src="./images/rnn.png"/><br/> <img src="./images/rnn.png"/><br/>
Figure 2 the RNN's data flow Figure 2 illustrates the RNN's data flow
</p> </p>
Please be aware that all steps run the same step-net. Each step Please be aware that every step runs the same step-net. Each step does the following:
1. creates the step-scope, 1. Creates the step-scope.
2. realizes local variables, including step-outputs, in the step-scope, and 2. Initializes the local variables including step-outputs, in the step-scope.
3. runs the step-net, which could use these variables. 3. Runs the step-net, which uses the above mentioned variables.
The RNN operator will compose its output from step outputs in step scopes. The RNN operator will compose its output from step outputs in each of the step scopes.
### Memory and Ex-memory ### Memory and Ex-memory
Let's give more details about memory and ex-memory via a simply example: Let's give more details about memory and ex-memory using a simple example:
$$ $$
h_t = U h_{t-1} + W x_t h_t = U h_{t-1} + W x_t
$$, $$,
where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$'s respectively. where $h_t$ and $h_{t-1}$ are the memory and ex-memory (previous memory) of step $t$ respectively.
In the implementation, we can make an ex-memory variable either "refers to" the memory variable of the previous step, In the implementation, we can make an ex-memory variable either "refer to" the memory variable of the previous step,
or copy the value of the previous memory value to the current ex-memory variable. or copy the memory value of the previous step to the current ex-memory variable.
### Usage in Python ### Usage in Python
For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md). For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md).
We can define an RNN's step-net using Block: We can define an RNN's step-net using a Block:
```python ```python
import paddle as pd import paddle as pd
X = some_op() # x is some operator's output, and is a LoDTensor X = some_op() # x is some operator's output and is a LoDTensor
a = some_op() a = some_op()
# declare parameters # declare parameters
@ -68,7 +68,7 @@ with rnn.stepnet():
x = rnn.add_input(X) x = rnn.add_input(X)
# declare a memory (rnn's step) # declare a memory (rnn's step)
h = rnn.add_memory(init=a) h = rnn.add_memory(init=a)
# h.pre_state() means previous memory of rnn # h.pre_state(), the previous memory of rnn
new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state())) new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state()))
# update current memory # update current memory
h.update(new_state) h.update(new_state)
@ -80,19 +80,19 @@ out = rnn()
Python API functions in above example: Python API functions in above example:
- `rnn.add_input` indicates the parameter is a variable that will be segmented into step-inputs. - `rnn.add_input`: indicates that the parameter is a variable that will be segmented into step-inputs.
- `rnn.add_memory` creates a variable used as the memory. - `rnn.add_memory`: creates a variable used as the memory.
- `rnn.add_outputs` mark the variables that will be concatenated across steps into the RNN output. - `rnn.add_outputs`: marks the variables that will be concatenated across steps into the RNN output.
### Nested RNN and LoDTensor ### Nested RNN and LoDTensor
An RNN whose step-net includes other RNN operators is known as an *nested RNN*. An RNN whose step-net includes other RNN operators is known as an *nested RNN*.
For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences. For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences. Each step of the higher level RNN also receives an input from the corresponding step of the lower level, and additionally the output from the previous time step at the same level.
The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text. The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text.
<p aligh="center"> <p align="center">
<img src="./images/2_level_rnn.png"/> <img src="./images/2_level_rnn.png"/>
</p> </p>
@ -110,7 +110,7 @@ a = some_op()
# chapter_data is a set of 128-dim word vectors # chapter_data is a set of 128-dim word vectors
# the first level of LoD is sentence # the first level of LoD is sentence
# the second level of LoD is chapter # the second level of LoD is a chapter
chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2) chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2)
def lower_level_rnn(paragraph): def lower_level_rnn(paragraph):
@ -138,14 +138,14 @@ with top_level_rnn.stepnet():
pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state())) pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state()))
top_level_rnn.add_outputs(h) top_level_rnn.add_outputs(h)
# just output the last step # output the last step
chapter_out = top_level_rnn(output_all_steps=False) chapter_out = top_level_rnn(output_all_steps=False)
``` ```
in above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences. In the above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is an LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences.
By default, the `RNNOp` will concatenate the outputs from all the time steps, By default, the `RNNOp` will concatenate the outputs from all the time steps.
if the `output_all_steps` set to False, it will only output the final time step. If the `output_all_steps` is set to False, it will only output the final time step.
<p align="center"> <p align="center">

@ -1,35 +1,28 @@
# Design: Sequence Decoder Generating LoDTensors # Design: Sequence Decoder Generating LoDTensors
In tasks such as machine translation and image to text, In tasks such as machine translation and visual captioning,
a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences. a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences, one word at a time.
This documentation describes how to implement the sequence decoder as an operator. This documentation describes how to implement the sequence decoder as an operator.
## Beam Search based Decoder ## Beam Search based Decoder
The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences, The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences. It is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.
it is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.
In the old version of PaddlePaddle, a C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search, In the old version of PaddlePaddle, the C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search, due to the complexity involved, the implementation relies on a lot of special data structures that are quite trivial and hard to be customized by users.
due to the complexity, the implementation relays on a lot of special data structures,
quite trivial and hard to be customized by users.
There are a lot of heuristic tricks in the sequence generation tasks, There are a lot of heuristic tricks in the sequence generation tasks, so the flexibility of sequence decoder is very important to users.
so the flexibility of sequence decoder is very important to users.
During PaddlePaddle's refactoring work, During the refactoring of PaddlePaddle, some new concepts are proposed such as: [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support the sequence usage, and they can also help make the implementation of beam search based sequence decoder **more transparent and modular** .
some new concept is proposed such as [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support sequence usage,
and they can help to make the implementation of beam search based sequence decoder **more transparent and modular** .
For example, the RNN sates, candidates IDs and probabilities of beam search can be represented as `LoDTensors`; For example, the RNN states, candidates IDs and probabilities of beam search can be represented all as `LoDTensors`;
the selected candidate's IDs in each time step can be stored in a `TensorArray`, and `Packed` to the sentences translated. the selected candidate's IDs in each time step can be stored in a `TensorArray`, and `Packed` to the sentences translated.
## Changing LoD's absolute offset to relative offsets ## Changing LoD's absolute offset to relative offsets
The current `LoDTensor` is designed to store levels of variable-length sequences, The current `LoDTensor` is designed to store levels of variable-length sequences. It stores several arrays of integers where each represents a level.
it stores several arrays of integers each represents a level.
The integers in each level represents the begin and end (not inclusive) offset of a sequence **in the underlying tensor**, The integers in each level represent the begin and end (not inclusive) offset of a sequence **in the underlying tensor**,
let's call this format the **absolute-offset LoD** for clear. let's call this format the **absolute-offset LoD** for clarity.
The relative-offset LoD can fast retrieve any sequence but fails to represent empty sequences, for example, a two-level LoD is as follows The relative-offset LoD can retrieve any sequence very quickly but fails to represent empty sequences, for example, a two-level LoD is as follows
```python ```python
[[0, 3, 9] [[0, 3, 9]
[0, 2, 3, 3, 3, 9]] [0, 2, 3, 3, 3, 9]]
@ -41,10 +34,9 @@ The first level tells that there are two sequences:
while on the second level, there are several empty sequences that both begin and end at `3`. while on the second level, there are several empty sequences that both begin and end at `3`.
It is impossible to tell how many empty second-level sequences exist in the first-level sequences. It is impossible to tell how many empty second-level sequences exist in the first-level sequences.
There are many scenarios that relay on empty sequence representation, There are many scenarios that rely on empty sequence representation, for example in machine translation or visual captioning, one instance has no translation or the empty candidate set for a prefix.
such as machine translation or image to text, one instance has no translations or the empty candidate set for a prefix.
So let's introduce another format of LoD, So let's introduce another format of LoD,
it stores **the offsets of the lower level sequences** and is called **relative-offset** LoD. it stores **the offsets of the lower level sequences** and is called **relative-offset** LoD.
For example, to represent the same sequences of the above data For example, to represent the same sequences of the above data
@ -54,19 +46,18 @@ For example, to represent the same sequences of the above data
[0, 2, 3, 3, 3, 9]] [0, 2, 3, 3, 3, 9]]
``` ```
the first level represents that there are two sequences, the first level represents that there are two sequences,
their offsets in the second-level LoD is `[0, 3)` and `[3, 5)`. their offsets in the second-level LoD is `[0, 3)` and `[3, 5)`.
The second level is the same with the relative offset example because the lower level is a tensor. The second level is the same with the relative offset example because the lower level is a tensor.
It is easy to find out the second sequence in the first-level LoD has two empty sequences. It is easy to find out the second sequence in the first-level LoD has two empty sequences.
The following demos are based on relative-offset LoD. The following examples are based on relative-offset LoD.
## Usage in a simple machine translation model ## Usage in a simple machine translation model
Let's start from a simple machine translation model that is simplified from [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a simple blueprint of what a sequence decoder can do and how to use it. Let's start from a simple machine translation model that is simplified from the [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a blueprint of what a sequence decoder can do and how to use it.
The model has an encoder that learns the semantic vector from a sequence, The model has an encoder that learns the semantic vector from a sequence, and a decoder which uses the sequence encoder to generate new sentences.
and a decoder which uses the sequence decoder to generate new sentences.
**Encoder** **Encoder**
```python ```python
@ -117,7 +108,7 @@ def generate():
# which means there are 2 sentences to translate # which means there are 2 sentences to translate
# - the first sentence has 1 translation prefixes, the offsets are [0, 1) # - the first sentence has 1 translation prefixes, the offsets are [0, 1)
# - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6) # - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6)
# the target_word.lod is # the target_word.lod is
# [[0, 1, 6] # [[0, 1, 6]
# [0, 2, 4, 7, 9 12]] # [0, 2, 4, 7, 9 12]]
# which means 2 sentences to translate, each has 1 and 5 prefixes # which means 2 sentences to translate, each has 1 and 5 prefixes
@ -154,37 +145,36 @@ def generate():
translation_ids, translation_scores = decoder() translation_ids, translation_scores = decoder()
``` ```
The `decoder.beam_search` is a operator that given the candidates and the scores of translations including the candidates, The `decoder.beam_search` is an operator that, given the candidates and the scores of translations including the candidates,
return the result of the beam search algorithm. returns the result of the beam search algorithm.
In this way, users can customize anything on the inputs or outputs of beam search, for example, two ways to prune some translation prefixes In this way, users can customize anything on the input or output of beam search, for example:
1. meke the correspondind elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate. 1. Make the corresponding elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate.
2. remove some specific candidate in `selected_ids` 2. Remove some specific candidate in `selected_ids`.
3. get the final `translation_ids`, remove the translation sequence in it. 3. Get the final `translation_ids`, remove the translation sequence in it.
The implementation of sequence decoder can reuse the C++ class [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30), The implementation of sequence decoder can reuse the C++ class: [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30),
so the python syntax is quite similar to a [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop). so the python syntax is quite similar to that of an [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop).
Both of them are two-level `LoDTensors` Both of them are two-level `LoDTensors`:
- the first level represents `batch_size` of (source) sentences; - The first level represents `batch_size` of (source) sentences.
- the second level represents the candidate ID sets for translation prefix. - The second level represents the candidate ID sets for translation prefix.
for example, 3 source sentences to translate, and has 2, 3, 1 candidates. For example, 3 source sentences to translate, and has 2, 3, 1 candidates.
Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape, Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape, and an `lod_expand` operator is used to expand the LoD of the previous state to fit the current state.
a `lod_expand` operator is used to expand the LoD of the previous state to fit the current state.
For example, the previous state For example, the previous state:
* LoD is `[0, 1, 3][0, 2, 5, 6]` * LoD is `[0, 1, 3][0, 2, 5, 6]`
* content of tensor is `a1 a2 b1 b2 b3 c1` * content of tensor is `a1 a2 b1 b2 b3 c1`
the current state stored in `encoder_ctx_expanded` the current state is stored in `encoder_ctx_expanded`:
* LoD is `[0, 2, 7][0 3 5 8 9 11 11]` * LoD is `[0, 2, 7][0 3 5 8 9 11 11]`
* the content is * the content is
- a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates) - a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates)
- a2 a2 - a2 a2
- b1 b1 b1 - b1 b1 b1
@ -192,54 +182,48 @@ the current state stored in `encoder_ctx_expanded`
- b3 b3 - b3 b3
- None (c1 has 0 candidates, so c1 is dropped) - None (c1 has 0 candidates, so c1 is dropped)
Benefit from the relative offset LoD, empty candidate set can be represented naturally. The benefit from the relative offset LoD is that the empty candidate set can be represented naturally.
the status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor, the corresponding syntax is The status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor. The corresponding syntax is:
```python ```python
decoder.output(selected_ids) decoder.output(selected_ids)
decoder.output(selected_generation_scores) decoder.output(selected_generation_scores)
``` ```
the `selected_ids` is the candidate ids for the prefixes, The `selected_ids` are the candidate ids for the prefixes, and will be `Packed` by `TensorArray` to a two-level `LoDTensor`, where the first level represents the source sequences and the second level represents generated sequences.
it will be `Packed` by `TensorArray` to a two-level `LoDTensor`,
the first level represents the source sequences,
the second level represents generated sequences.
Pack the `selected_scores` will get a `LoDTensor` that stores scores of each candidate of translations. Packing the `selected_scores` will get a `LoDTensor` that stores scores of each translation candidate.
Pack the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation. Packing the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation.
## LoD and shape changes during decoding ## LoD and shape changes during decoding
<p align="center"> <p align="center">
<img src="./images/LOD-and-shape-changes-during-decoding.jpg"/> <img src="./images/LOD-and-shape-changes-during-decoding.jpg"/>
</p> </p>
According the image above, the only phrase to change LoD is beam search. According to the image above, the only phase that changes the LoD is beam search.
## Beam search design ## Beam search design
The beam search algorthm will be implemented as one method of the sequence decoder, it has 3 inputs The beam search algorithm will be implemented as one method of the sequence decoder and has 3 inputs:
1. `topk_ids`, top K candidate ids for each prefix. 1. `topk_ids`, the top K candidate ids for each prefix.
2. `topk_scores`, the corresponding scores for `topk_ids` 2. `topk_scores`, the corresponding scores for `topk_ids`
3. `generated_scores`, the score of the prefixes. 3. `generated_scores`, the score of the prefixes.
All of the are LoDTensors, so that the sequence affilication is clear. All of these are LoDTensors, so that the sequence affiliation is clear. Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.
Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.
It will return three variables It will return three variables:
1. `selected_ids`, the final candidate beam search function selected for the next step. 1. `selected_ids`, the final candidate beam search function selected for the next step.
2. `selected_scores`, the scores for the candidates. 2. `selected_scores`, the scores for the candidates.
3. `generated_scores`, the updated scores for each prefixes (with the new candidates appended). 3. `generated_scores`, the updated scores for each prefix (with the new candidates appended).
## Introducing the LoD-based `Pack` and `Unpack` methods in `TensorArray` ## Introducing the LoD-based `Pack` and `Unpack` methods in `TensorArray`
The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors, The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors that exist at each time step,
and they exist in each time step,
so it is natural to store them in arrays. so it is natural to store them in arrays.
Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors, Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors. It is better to store the results of beam search in a `TensorArray`.
the results of beam search are better to store in a `TensorArray`.
The `Pack` and `UnPack` in `TensorArray` are used to package tensors in the array to a `LoDTensor` or split the `LoDTensor` to an array of tensors. The `Pack` and `UnPack` in `TensorArray` are used to pack tensors in the array to an `LoDTensor` or split the `LoDTensor` to an array of tensors.
It needs some extensions to support pack or unpack an array of `LoDTensors`. It needs some extensions to support the packing or unpacking an array of `LoDTensors`.

@ -29,6 +29,9 @@ static void initPaddle(int argc, char** argv) {
extern "C" { extern "C" {
paddle_error paddle_init(int argc, char** argv) { paddle_error paddle_init(int argc, char** argv) {
static bool isInit = false;
if (isInit) return kPD_NO_ERROR;
std::vector<char*> realArgv; std::vector<char*> realArgv;
realArgv.reserve(argc + 1); realArgv.reserve(argc + 1);
realArgv.push_back(strdup("")); realArgv.push_back(strdup(""));
@ -37,6 +40,7 @@ paddle_error paddle_init(int argc, char** argv) {
} }
initPaddle(argc + 1, realArgv.data()); initPaddle(argc + 1, realArgv.data());
free(realArgv[0]); free(realArgv[0]);
isInit = true;
return kPD_NO_ERROR; return kPD_NO_ERROR;
} }
} }

@ -121,6 +121,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix mat,
paddle_matrix paddle_matrix_create_sparse( paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) { uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) {
#ifndef PADDLE_MOBILE_INFERENCE
auto ptr = new paddle::capi::CMatrix(); auto ptr = new paddle::capi::CMatrix();
ptr->mat = paddle::Matrix::createSparseMatrix( ptr->mat = paddle::Matrix::createSparseMatrix(
height, height,
@ -131,6 +132,9 @@ paddle_matrix paddle_matrix_create_sparse(
false, false,
useGpu); useGpu);
return ptr; return ptr;
#else
return nullptr;
#endif
} }
paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat, paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
@ -140,6 +144,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
uint64_t colSize, uint64_t colSize,
float* valueArray, float* valueArray,
uint64_t valueSize) { uint64_t valueSize) {
#ifndef PADDLE_MOBILE_INFERENCE
if (mat == nullptr) return kPD_NULLPTR; if (mat == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat); auto ptr = cast(mat);
if (rowArray == nullptr || colArray == nullptr || if (rowArray == nullptr || colArray == nullptr ||
@ -160,4 +165,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
} else { } else {
return kPD_NOT_SUPPORTED; return kPD_NOT_SUPPORTED;
} }
#else
return kPD_NOT_SUPPORTED;
#endif
} }

@ -48,6 +48,7 @@ PD_API paddle_matrix paddle_matrix_create(uint64_t height,
* @param isBinary is binary (either 1 or 0 in matrix) or not. * @param isBinary is binary (either 1 or 0 in matrix) or not.
* @param useGpu is using GPU or not. * @param useGpu is using GPU or not.
* @return paddle_matrix. * @return paddle_matrix.
* @note Mobile inference does not support this interface.
*/ */
PD_API paddle_matrix paddle_matrix_create_sparse( PD_API paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu); uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu);
@ -129,6 +130,7 @@ PD_API paddle_error paddle_matrix_get_shape(paddle_matrix mat,
* NULL if the matrix is binary. * NULL if the matrix is binary.
* @param [in] valueSize length of value array. Zero if the matrix is binary. * @param [in] valueSize length of value array. Zero if the matrix is binary.
* @return paddle_error * @return paddle_error
* @note Mobile inference does not support this interface.
*/ */
PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat, PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
int* rowArray, int* rowArray,

@ -27,7 +27,9 @@ if(WITH_GPU)
set_source_files_properties(${CUDA_CXX_SOURCES} set_source_files_properties(${CUDA_CXX_SOURCES}
PROPERTIES COMPILE_FLAGS "-D__NVCC__") PROPERTIES COMPILE_FLAGS "-D__NVCC__")
else() else()
if (NOT MOBILE_INFERENCE)
set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc) set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc)
endif()
endif() endif()
set(CUDA_CU_SOURCES set(CUDA_CU_SOURCES

@ -18,7 +18,7 @@ limitations under the License. */
#include "hl_base.h" #include "hl_base.h"
/** /**
* @brief Maximum pool forward. * @brief Maximum pool forward with Mask output.
* *
* @param[in] frameCnt batch size of input image. * @param[in] frameCnt batch size of input image.
* @param[in] inputData input data. * @param[in] inputData input data.
@ -35,7 +35,7 @@ limitations under the License. */
* @param[in] paddingW padding width. * @param[in] paddingW padding width.
* @param[out] tgtData output data. * @param[out] tgtData output data.
* @param[in] tgtStride stride between output data samples. * @param[in] tgtStride stride between output data samples.
* * @param[out] maskData the location indices of select max data.
*/ */
extern void hl_maxpool_forward(const int frameCnt, extern void hl_maxpool_forward(const int frameCnt,
const real* inputData, const real* inputData,
@ -51,7 +51,8 @@ extern void hl_maxpool_forward(const int frameCnt,
const int paddingH, const int paddingH,
const int paddingW, const int paddingW,
real* tgtData, real* tgtData,
const int tgtStride); const int tgtStride,
real* maskData = NULL);
/** /**
* @brief Maximum pool backward. * @brief Maximum pool backward.

@ -31,7 +31,8 @@ inline void hl_maxpool_forward(const int frameCnt,
const int paddingH, const int paddingH,
const int paddingW, const int paddingW,
real* tgtData, real* tgtData,
const int tgtStride) {} const int tgtStride,
real* MaskData) {}
inline void hl_maxpool_backward(const int frameCnt, inline void hl_maxpool_backward(const int frameCnt,
const real* inputData, const real* inputData,

@ -31,7 +31,8 @@ __global__ void KeMaxPoolForward(const int nthreads,
const int offsetH, const int offsetH,
const int offsetW, const int offsetW,
real* tgtData, real* tgtData,
const int tgtStride) { const int tgtStride,
real* maskData) {
int index = blockIdx.x * blockDim.x + threadIdx.x; int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < nthreads) { if (index < nthreads) {
int pw = index % pooledW; int pw = index % pooledW;
@ -45,16 +46,22 @@ __global__ void KeMaxPoolForward(const int nthreads,
hstart = max(hstart, 0); hstart = max(hstart, 0);
wstart = max(wstart, 0); wstart = max(wstart, 0);
real maxval = -FLT_MAX; real maxval = -FLT_MAX;
int max_index = -1;
inputData += (frameNum * channels + c) * height * width; inputData += (frameNum * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) { for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) { for (int w = wstart; w < wend; ++w) {
if (maxval < inputData[h * width + w]) if (maxval < inputData[h * width + w]) {
maxval = inputData[h * width + w]; max_index = h * width + w;
maxval = inputData[max_index];
}
} }
} }
int tgtIndex = int tgtIndex =
index % (pooledW * pooledH * channels) + frameNum * tgtStride; index % (pooledW * pooledH * channels) + frameNum * tgtStride;
tgtData[tgtIndex] = maxval; tgtData[tgtIndex] = maxval;
if (maskData != NULL) {
maskData[tgtIndex] = max_index;
}
} }
} }
@ -72,7 +79,8 @@ void hl_maxpool_forward(const int frameCnt,
const int paddingH, const int paddingH,
const int paddingW, const int paddingW,
real* tgtData, real* tgtData,
const int tgtStride) { const int tgtStride,
real* maskData) {
int num_kernels = pooledH * pooledW * channels * frameCnt; int num_kernels = pooledH * pooledW * channels * frameCnt;
int blocks = (num_kernels + 1024 - 1) / 1024; int blocks = (num_kernels + 1024 - 1) / 1024;
dim3 threads(1024, 1); dim3 threads(1024, 1);
@ -92,7 +100,8 @@ void hl_maxpool_forward(const int frameCnt,
paddingH, paddingH,
paddingW, paddingW,
tgtData, tgtData,
tgtStride); tgtStride,
maskData);
CHECK_SYNC("hl_maxpool_forward failed"); CHECK_SYNC("hl_maxpool_forward failed");
} }

@ -38,9 +38,9 @@ py_proto_compile(framework_py_proto SRCS framework.proto)
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto/ COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/proto/
COMMENT "Copy generated python proto into directory paddle/v2/framework/proto." COMMENT "Copy generated python proto into directory paddle/v2/fluid/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op) cc_library(backward SRCS backward.cc DEPS net_op)

@ -270,6 +270,19 @@ static bool AllGradInSet(const std::vector<std::string>& names,
return false; return false;
} }
} }
if (VLOG_IS_ON(10)) {
std::ostringstream sout;
sout << "All input {";
for (auto& name : names) {
sout << name << ",";
}
sout << "} is in {";
for (auto& name : set) {
sout << name << ",";
}
sout << "}";
VLOG(10) << sout.str();
}
return true; return true;
} }
@ -290,14 +303,12 @@ static void CreateGradVarInBlock(
auto ops = block_desc->AllOps(); auto ops = block_desc->AllOps();
for (size_t op_index = grad_op_start_index; op_index < ops.size(); for (size_t op_index = grad_op_start_index; op_index < ops.size();
++op_index) { ++op_index) {
bool need_infer_shape = false;
std::unordered_set<std::string> new_vars; std::unordered_set<std::string> new_vars;
ForEachVarName(ops[op_index]->Outputs(), ForEachVarName(ops[op_index]->Outputs(),
[&](const std::string& grad_var_name) { [&](const std::string& grad_var_name) {
if (block_desc->HasVar(grad_var_name)) { if (block_desc->HasVar(grad_var_name)) {
return false; return false;
} }
need_infer_shape = true;
auto var = block_desc->Var(grad_var_name); auto var = block_desc->Var(grad_var_name);
new_vars.insert(var->Name()); new_vars.insert(var->Name());
auto it = param_name_map.find(grad_var_name); auto it = param_name_map.find(grad_var_name);
@ -311,23 +322,21 @@ static void CreateGradVarInBlock(
grad_record.op_idx_ = static_cast<int>(op_index); grad_record.op_idx_ = static_cast<int>(op_index);
return false; /* not break */ return false; /* not break */
}); });
if (need_infer_shape) { ops[op_index]->InferVarType(block_desc);
ops[op_index]->InferVarType(block_desc); for (auto& arg : ops[op_index]->OutputArgumentNames()) {
for (auto& arg : ops[op_index]->OutputArgumentNames()) { if (new_vars.find(arg) == new_vars.end()) {
if (new_vars.find(arg) == new_vars.end()) { continue;
continue; }
} auto pname = FwdName(arg);
auto pname = FwdName(arg); auto* param = block_desc->FindVarRecursive(pname);
auto* param = block_desc->FindVarRecursive(pname); auto* grad = block_desc->FindVar(arg);
auto* grad = block_desc->FindVar(arg); if (param == nullptr) {
if (param == nullptr) { grad->SetDataType(DataType::FP32);
grad->SetDataType(DataType::FP32); } else {
} else { grad->SetDataType(param->GetDataType());
grad->SetDataType(param->GetDataType());
}
} }
ops[op_index]->InferShape(*block_desc);
} }
ops[op_index]->InferShape(*block_desc);
} }
} }
@ -377,10 +386,17 @@ std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
return grad_op_descs; return grad_op_descs;
} }
static BlockDescBind* CreateStepBlock(
ProgramDescBind& program_desc,
std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var,
int step_block_idx);
std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward( std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
ProgramDescBind& program_desc, int block_idx, ProgramDescBind& program_desc, int block_idx,
std::unordered_set<std::string>* no_grad_vars, std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var) { std::unordered_map<std::string, std::string>* grad_to_var) {
VLOG(5) << "MakeBlockBackward";
BlockDescBind* cur_block = program_desc.MutableBlock(block_idx); BlockDescBind* cur_block = program_desc.MutableBlock(block_idx);
std::vector<OpDescBind*> op_descs = cur_block->AllOps(); std::vector<OpDescBind*> op_descs = cur_block->AllOps();
std::unordered_map<std::string, std::vector<size_t>> dup_out_ops; std::unordered_map<std::string, std::vector<size_t>> dup_out_ops;
@ -388,22 +404,32 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std::vector<std::unique_ptr<OpDescBind>> backward_descs; std::vector<std::unique_ptr<OpDescBind>> backward_descs;
for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) { for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) {
VLOG(5) << "Making backward " << (*it)->Type() << " op";
std::vector<std::unique_ptr<OpDescBind>> op_grads; std::vector<std::unique_ptr<OpDescBind>> op_grads;
if ((*it)->Type() == "recurrent") { if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") {
int step_block_idx = (*it)->GetBlockAttr("step_block"); int step_block_idx = (*it)->GetBlockAttr("step_block");
auto backward_block_op_descs = MakeBlockBackward( BlockDescBind* backward_block = CreateStepBlock(
program_desc, step_block_idx, no_grad_vars, grad_to_var); program_desc, no_grad_vars, grad_to_var, step_block_idx);
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else if ((*it)->Type() == "conditional_block") {
BlockDescBind* backward_block = BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx)); CreateStepBlock(program_desc, no_grad_vars, grad_to_var,
for (auto& ptr : backward_block_op_descs) { (*it)->GetBlockAttr("block"));
backward_block->AppendAllocatedOp(std::move(ptr));
}
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else { } else {
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
} }
if (VLOG_IS_ON(10)) {
std::ostringstream sout;
sout << "Made ";
for (auto& op_grad : op_grads) {
sout << op_grad->Type() << " ";
}
VLOG(10) << sout.str();
}
for (const auto& desc : op_grads) { for (const auto& desc : op_grads) {
for (const std::string& out_name : desc->OutputArgumentNames()) { for (const std::string& out_name : desc->OutputArgumentNames()) {
if (out_name.find("@GRAD") == std::string::npos) { if (out_name.find("@GRAD") == std::string::npos) {
@ -419,6 +445,8 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs), op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs),
[](std::unique_ptr<OpDescBind>& ptr) { return std::move(ptr); }); [](std::unique_ptr<OpDescBind>& ptr) { return std::move(ptr); });
} }
VLOG(5) << "Appending Sums";
// Check whether some variables are written more than once // Check whether some variables are written more than once
std::list<std::pair<size_t, std::unique_ptr<OpDescBind>>> pending_sum_ops; std::list<std::pair<size_t, std::unique_ptr<OpDescBind>>> pending_sum_ops;
for (const auto& dup : dup_out_ops) { for (const auto& dup : dup_out_ops) {
@ -426,16 +454,22 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
const std::vector<size_t> dup_op = dup.second; const std::vector<size_t> dup_op = dup.second;
if (out_name != kEmptyVarName && dup_op.size() > 1) { if (out_name != kEmptyVarName && dup_op.size() > 1) {
std::vector<std::string> sum_op_inputs; std::vector<std::string> sum_op_inputs;
std::string next_g_name = out_name;
for (size_t i = 0; i < dup_op.size(); ++i) { for (size_t i = 0; i < dup_op.size(); ++i) {
VLOG(10) << backward_descs[dup_op[i]]->Type() << " has " << out_name
<< " duplicated";
std::string new_name = out_name + "@RENAME@" + std::to_string(i); std::string new_name = out_name + "@RENAME@" + std::to_string(i);
backward_descs[dup_op[i]]->Rename(out_name, new_name); backward_descs[dup_op[i]]->RenameOutput(out_name, new_name);
backward_descs[dup_op[i]]->RenameInput(out_name, next_g_name);
sum_op_inputs.emplace_back(new_name); sum_op_inputs.emplace_back(new_name);
next_g_name = sum_op_inputs.back();
} }
std::unique_ptr<OpDescBind> sum_op(new OpDescBind( std::unique_ptr<OpDescBind> sum_op(new OpDescBind(
"sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {})); "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {}));
pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)}); pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)});
} }
} }
pending_sum_ops.sort( pending_sum_ops.sort(
[](const std::pair<size_t, std::unique_ptr<OpDescBind>>& a, [](const std::pair<size_t, std::unique_ptr<OpDescBind>>& a,
const std::pair<size_t, std::unique_ptr<OpDescBind>>& b) { const std::pair<size_t, std::unique_ptr<OpDescBind>>& b) {
@ -446,9 +480,26 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std::move(p.second)); std::move(p.second));
} }
VLOG(5) << "MakeBlockBackward Finished";
return backward_descs; return backward_descs;
} }
static BlockDescBind* CreateStepBlock(
ProgramDescBind& program_desc,
std::unordered_set<std::string>* no_grad_vars,
std::unordered_map<std::string, std::string>* grad_to_var,
int step_block_idx) {
auto backward_block_op_descs = MakeBlockBackward(program_desc, step_block_idx,
no_grad_vars, grad_to_var);
BlockDescBind* backward_block =
program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
for (auto& ptr : backward_block_op_descs) {
backward_block->AppendAllocatedOp(move(ptr));
}
return backward_block;
}
ParamGradInfoMap AppendBackward( ParamGradInfoMap AppendBackward(
ProgramDescBind& program_desc, const VarDescBind& target, ProgramDescBind& program_desc, const VarDescBind& target,
const std::unordered_set<std::string>& no_grad_vars) { const std::unordered_set<std::string>& no_grad_vars) {

@ -29,6 +29,8 @@ inline DataType ToDataType(std::type_index type) {
return DataType::INT32; return DataType::INT32;
} else if (typeid(int64_t).hash_code() == type.hash_code()) { } else if (typeid(int64_t).hash_code() == type.hash_code()) {
return DataType::INT64; return DataType::INT64;
} else if (typeid(bool).hash_code() == type.hash_code()) {
return DataType::BOOL;
} else { } else {
PADDLE_THROW("Not supported"); PADDLE_THROW("Not supported");
} }

@ -60,8 +60,7 @@ void make_ddim(DDim& ddim, const int64_t* dims, int n) {
ddim = make_dim<9>(dims); ddim = make_dim<9>(dims);
break; break;
default: default:
throw std::invalid_argument( PADDLE_THROW("Dynamic dimensions must have between [1, 9] dimensions.");
"Dynamic dimensions must have between [1, 9] dimensions.");
} }
} }

@ -120,6 +120,7 @@ void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id,
for (auto& op_desc : block.AllOps()) { for (auto& op_desc : block.AllOps()) {
auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
VLOG(10) << op->DebugString();
op->Run(*local_scope, *device); op->Run(*local_scope, *device);
} }
if (create_local_scope) { if (create_local_scope) {

@ -235,6 +235,23 @@ void OpDescBind::Rename(const std::string &old_name,
need_update_ = true; need_update_ = true;
} }
void OpDescBind::RenameOutput(const std::string &old_name,
const std::string &new_name) {
for (auto &output : outputs_) {
std::replace(output.second.begin(), output.second.end(), old_name,
new_name);
}
need_update_ = true;
}
void OpDescBind::RenameInput(const std::string &old_name,
const std::string &new_name) {
for (auto &input : inputs_) {
std::replace(input.second.begin(), input.second.end(), old_name, new_name);
}
need_update_ = true;
}
struct SetAttrDescVisitor : public boost::static_visitor<void> { struct SetAttrDescVisitor : public boost::static_visitor<void> {
explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {} explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {}
mutable OpDesc::Attr *attr_; mutable OpDesc::Attr *attr_;
@ -448,7 +465,12 @@ const std::vector<std::string> &CompileTimeInferShapeContext::Outputs(
DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const { DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const {
auto var = block_.FindVarRecursive(name); auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name); PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
return framework::make_ddim(var->Shape()); try {
return framework::make_ddim(var->Shape());
} catch (...) {
VLOG(5) << "GetDim of variable " << name << " error";
std::rethrow_exception(std::current_exception());
}
} }
void CompileTimeInferShapeContext::SetDim(const std::string &name, void CompileTimeInferShapeContext::SetDim(const std::string &name,

@ -73,6 +73,10 @@ class OpDescBind {
void Rename(const std::string &old_name, const std::string &new_name); void Rename(const std::string &old_name, const std::string &new_name);
void RenameOutput(const std::string &old_name, const std::string &new_name);
void RenameInput(const std::string &old_name, const std::string &new_name);
// Only be used in C++ // Only be used in C++
const AttributeMap &GetAttrMap() const; const AttributeMap &GetAttrMap() const;

@ -403,19 +403,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
void OperatorWithKernel::Run(const Scope& scope, void OperatorWithKernel::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const { const platform::DeviceContext& dev_ctx) const {
if (VLOG_IS_ON(1)) {
auto inputs = this->InputVars();
auto outputs = this->OutputVars(true);
std::ostringstream sout;
sout << "Run operator " << this->Type() << " From [";
std::ostream_iterator<std::string> out_it(sout, ",");
std::copy(inputs.begin(), inputs.end(), out_it);
sout << "] to [";
std::copy(outputs.begin(), outputs.end(), out_it);
sout << "]";
VLOG(1) << sout.str();
}
RuntimeInferShapeContext infer_shape_ctx(*this, scope); RuntimeInferShapeContext infer_shape_ctx(*this, scope);
this->InferShape(&infer_shape_ctx); this->InferShape(&infer_shape_ctx);

@ -38,11 +38,12 @@ Scope& Scope::NewScope() const {
Variable* Scope::Var(const std::string& name) { Variable* Scope::Var(const std::string& name) {
auto iter = vars_.find(name); auto iter = vars_.find(name);
if (iter != vars_.end()) { if (iter != vars_.end()) {
VLOG(3) << "Get existing variable " << name;
return iter->second; return iter->second;
} }
Variable* v = new Variable(); Variable* v = new Variable();
vars_[name] = v; vars_[name] = v;
VLOG(3) << "Create variable " << name << " on scope"; VLOG(3) << "Create variable " << name;
v->name_ = &(vars_.find(name)->first); v->name_ = &(vars_.find(name)->first);
return v; return v;
} }

@ -53,6 +53,10 @@ class InferShapeContext {
virtual bool IsRuntime() const = 0; virtual bool IsRuntime() const = 0;
// Note: In while op, we need this to be public
void SetDims(const std::vector<std::string> &names,
const std::vector<framework::DDim> &dims);
protected: protected:
virtual framework::DDim GetDim(const std::string &name) const = 0; virtual framework::DDim GetDim(const std::string &name) const = 0;
virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0; virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0;
@ -60,9 +64,6 @@ class InferShapeContext {
std::vector<framework::DDim> GetDims( std::vector<framework::DDim> GetDims(
const std::vector<std::string> &names) const; const std::vector<std::string> &names) const;
void SetDims(const std::vector<std::string> &names,
const std::vector<framework::DDim> &dims);
std::vector<VarDesc::VarType> GetVarTypes( std::vector<VarDesc::VarType> GetVarTypes(
const std::vector<std::string> &names) const; const std::vector<std::string> &names) const;

@ -61,6 +61,7 @@ public:
// function arguments // function arguments
strides_ = config.get<std::vector<size_t>>("strides"); strides_ = config.get<std::vector<size_t>>("strides");
paddings_ = config.get<std::vector<size_t>>("paddings"); paddings_ = config.get<std::vector<size_t>>("paddings");
dilations_ = config.get<std::vector<size_t>>("dilations");
groups_ = config.get<size_t>("groups"); groups_ = config.get<size_t>("groups");
// number of inputs and outputs // number of inputs and outputs
@ -118,6 +119,7 @@ protected:
std::vector<size_t> strides_; std::vector<size_t> strides_;
std::vector<size_t> paddings_; std::vector<size_t> paddings_;
std::vector<size_t> dilations_;
/// Group size, refer to grouped convolution in /// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the /// Alex Krizhevsky's paper: when group=2, the first half of the
@ -133,6 +135,10 @@ protected:
inline int paddingW() const { return paddings_[1]; } inline int paddingW() const { return paddings_[1]; }
inline int dilationH() const { return dilations_[0]; }
inline int dilationW() const { return dilations_[1]; }
// A temporary memory in convolution calculation. // A temporary memory in convolution calculation.
MemoryHandlePtr memory_; MemoryHandlePtr memory_;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save