parent
cfd012e2cb
commit
b26e9bd232
@ -0,0 +1,169 @@
|
||||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class CrossEntropyOpBase : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto label_dims = ctx->GetInputDim("Label");
|
||||
int rank = x_dims.size();
|
||||
PADDLE_ENFORCE_EQ(rank, label_dims.size(),
|
||||
"Input(X) and Input(Label) shall have the same rank.");
|
||||
bool check = true;
|
||||
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
|
||||
framework::product(label_dims) <= 0)) {
|
||||
check = false;
|
||||
}
|
||||
if (check) {
|
||||
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
||||
framework::slice_ddim(label_dims, 0, rank - 1),
|
||||
"Input(X) and Input(Label) shall have the same shape "
|
||||
"except the last dimension.");
|
||||
}
|
||||
|
||||
if (IsSoftLabel(ctx)) {
|
||||
if (check) {
|
||||
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
|
||||
"If Attr(soft_label) == true, the last dimension of "
|
||||
"Input(X) and Input(Label) should be equal.");
|
||||
}
|
||||
} else {
|
||||
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
|
||||
"If Attr(softLabel) == false, the last dimension of "
|
||||
"Input(Label) should be 1.");
|
||||
}
|
||||
|
||||
auto y_dims = x_dims;
|
||||
y_dims[rank - 1] = 1;
|
||||
ctx->SetOutputDim("Y", y_dims);
|
||||
ctx->ShareLoD("X", /*->*/ "Y");
|
||||
}
|
||||
|
||||
protected:
|
||||
// Explicitly set that the data type of computation kernel of cross_entropy
|
||||
// is determined by its input "X".
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
||||
ctx.device_context());
|
||||
}
|
||||
|
||||
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
|
||||
return ctx->Attrs().Get<bool>("soft_label");
|
||||
}
|
||||
};
|
||||
|
||||
class CrossEntropyOpInferVarType
|
||||
: public framework::PassInDtypeAndVarTypeToOutput {
|
||||
protected:
|
||||
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
|
||||
const override {
|
||||
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
|
||||
}
|
||||
};
|
||||
|
||||
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
|
||||
"Input(Y@GRAD) shoudl be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
||||
"Output(X@GRAD) should be not null.");
|
||||
|
||||
auto x_dims = GetXDim(ctx);
|
||||
auto label_dims = ctx->GetInputDim("Label");
|
||||
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
|
||||
int rank = x_dims.size();
|
||||
PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
|
||||
"Input(Y@Grad) and Input(X) should have the same rank.");
|
||||
PADDLE_ENFORCE_EQ(label_dims.size(), rank,
|
||||
"Input(Label) and Input(X) should have the same rank.");
|
||||
|
||||
bool check = true;
|
||||
if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
|
||||
framework::product(label_dims) <= 0)) {
|
||||
check = false;
|
||||
}
|
||||
|
||||
if (check) {
|
||||
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
||||
framework::slice_ddim(label_dims, 0, rank - 1),
|
||||
"The Input(X) and Input(Label) should have the same "
|
||||
"shape except the last dimension.");
|
||||
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
||||
framework::slice_ddim(dy_dims, 0, rank - 1),
|
||||
"The Input(X) and Input(Y@Grad) should have the same "
|
||||
"shape except the last dimension.");
|
||||
}
|
||||
if (IsSoftLabel(ctx)) {
|
||||
if (check) {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
x_dims[rank - 1], label_dims[rank - 1],
|
||||
"When Attr(soft_label) == true, the last dimension of "
|
||||
"Input(X) and Input(Label) should be equal.");
|
||||
}
|
||||
} else {
|
||||
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
|
||||
"When Attr(soft_label) == false, the last dimension of "
|
||||
"Input(Label) should be 1.");
|
||||
}
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
||||
PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
|
||||
"The last dimension of Input(Y@Grad) should be 1.");
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
||||
ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
|
||||
}
|
||||
|
||||
protected:
|
||||
// Explicitly set that the data type of computation kernel of cross_entropy
|
||||
// is determined by its input "X".
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
|
||||
ctx.device_context());
|
||||
}
|
||||
|
||||
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
|
||||
return ctx->GetInputDim("X");
|
||||
}
|
||||
|
||||
virtual const char* VarNameWithXLoD() const { return "X"; }
|
||||
|
||||
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
|
||||
return ctx->Attrs().Get<bool>("soft_label");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,42 @@
|
||||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/fluid/platform/float16.h"
|
||||
#include "paddle/fluid/platform/hostdevice.h"
|
||||
|
||||
#include "math.h" // NOLINT
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
inline HOSTDEVICE platform::float16 real_exp(platform::float16 x) {
|
||||
return static_cast<platform::float16>(::expf(static_cast<float>(x)));
|
||||
}
|
||||
|
||||
inline HOSTDEVICE float real_exp(float x) { return ::expf(x); }
|
||||
|
||||
inline HOSTDEVICE double real_exp(double x) { return ::exp(x); }
|
||||
|
||||
inline HOSTDEVICE platform::float16 real_log(platform::float16 x) {
|
||||
return static_cast<platform::float16>(::logf(static_cast<float>(x)));
|
||||
}
|
||||
|
||||
inline HOSTDEVICE float real_log(float x) { return ::logf(x); }
|
||||
|
||||
inline HOSTDEVICE double real_log(double x) { return ::log(x); }
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue