[Paddle-TRT] Better Paddle-TensorRT support for PaddleSlim quant models (#25097)
* Paddle-TensorRT support slim QAT. test=develop * add comments. test=develop * use RenameInput instead of ResetInputs. test=developfix_copy_if_different
parent
a965ac4c61
commit
b2f5a149e7
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,63 @@
|
|||||||
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include <glog/logging.h>
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include <numeric>
|
||||||
|
|
||||||
|
#include "paddle/fluid/inference/tests/api/trt_test_helper.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace inference {
|
||||||
|
|
||||||
|
TEST(quant_int8, yolov3_resnet50) {
|
||||||
|
AnalysisConfig config;
|
||||||
|
config.EnableUseGpu(100, 0);
|
||||||
|
config.SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
|
||||||
|
config.SwitchUseFeedFetchOps(false);
|
||||||
|
config.EnableTensorRtEngine(1 << 30, 1, 3, AnalysisConfig::Precision::kInt8,
|
||||||
|
false, false);
|
||||||
|
|
||||||
|
auto predictor = CreatePaddlePredictor(config);
|
||||||
|
auto input_names = predictor->GetInputNames();
|
||||||
|
int channels = 3;
|
||||||
|
int height = 608;
|
||||||
|
int width = 608;
|
||||||
|
int input_num = channels * height * width * 1;
|
||||||
|
|
||||||
|
float *input = new float[input_num];
|
||||||
|
int32_t *im_shape = new int32_t[2];
|
||||||
|
im_shape[0] = 608;
|
||||||
|
im_shape[1] = 608;
|
||||||
|
memset(input, 1.0, input_num * sizeof(float));
|
||||||
|
auto input_t = predictor->GetInputTensor(input_names[0]);
|
||||||
|
input_t->Reshape({1, channels, height, width});
|
||||||
|
input_t->copy_from_cpu(input);
|
||||||
|
|
||||||
|
auto input_t1 = predictor->GetInputTensor(input_names[1]);
|
||||||
|
input_t1->Reshape({1, 2});
|
||||||
|
input_t1->copy_from_cpu(im_shape);
|
||||||
|
|
||||||
|
ASSERT_TRUE(predictor->ZeroCopyRun());
|
||||||
|
|
||||||
|
std::vector<float> out_data;
|
||||||
|
auto output_names = predictor->GetOutputNames();
|
||||||
|
auto output_t = predictor->GetOutputTensor(output_names[0]);
|
||||||
|
std::vector<int> output_shape = output_t->shape();
|
||||||
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
||||||
|
std::multiplies<int>());
|
||||||
|
out_data.resize(out_num);
|
||||||
|
output_t->copy_to_cpu(out_data.data());
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace inference
|
||||||
|
} // namespace paddle
|
Loading…
Reference in new issue