TracedLayer Error Message Enhancement (#25734)
Enhance TracedLayer Error Message Note: this PR uses assert to check type somewhere and check_type somewhere, the reason is that the check_type skips checking when it is under dygraph mode.fix_copy_if_different
parent
c9285a18a0
commit
b3f58d3086
@ -0,0 +1,156 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
import six
|
||||
import unittest
|
||||
|
||||
|
||||
class SimpleFCLayer(fluid.dygraph.Layer):
|
||||
def __init__(self, feature_size, batch_size, fc_size):
|
||||
super(SimpleFCLayer, self).__init__()
|
||||
self._linear = fluid.dygraph.Linear(feature_size, fc_size)
|
||||
self._offset = fluid.dygraph.to_variable(
|
||||
np.random.random((batch_size, fc_size)).astype('float32'))
|
||||
|
||||
def forward(self, x):
|
||||
fc = self._linear(x)
|
||||
return fc + self._offset
|
||||
|
||||
|
||||
class TestTracedLayerErrMsg(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.batch_size = 4
|
||||
self.feature_size = 3
|
||||
self.fc_size = 2
|
||||
self.layer = self._train_simple_net()
|
||||
if six.PY2:
|
||||
self.type_str = 'type'
|
||||
else:
|
||||
self.type_str = 'class'
|
||||
|
||||
def test_trace_err(self):
|
||||
with fluid.dygraph.guard():
|
||||
in_x = fluid.dygraph.to_variable(
|
||||
np.random.random((self.batch_size, self.feature_size)).astype(
|
||||
'float32'))
|
||||
|
||||
with self.assertRaises(AssertionError) as e:
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
None, [in_x])
|
||||
self.assertEqual(
|
||||
"The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received <{} 'NoneType'>.".
|
||||
format(self.type_str), str(e.exception))
|
||||
with self.assertRaises(TypeError) as e:
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
self.layer, 3)
|
||||
self.assertEqual(
|
||||
"The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received <{} 'int'>.".
|
||||
format(self.type_str, self.type_str), str(e.exception))
|
||||
with self.assertRaises(TypeError) as e:
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
self.layer, [True, 1])
|
||||
self.assertEqual(
|
||||
"The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received <{} 'bool'>.".
|
||||
format(self.type_str), str(e.exception))
|
||||
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
self.layer, [in_x])
|
||||
|
||||
def test_set_strategy_err(self):
|
||||
with fluid.dygraph.guard():
|
||||
in_x = fluid.dygraph.to_variable(
|
||||
np.random.random((self.batch_size, self.feature_size)).astype(
|
||||
'float32'))
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
self.layer, [in_x])
|
||||
|
||||
with self.assertRaises(AssertionError) as e:
|
||||
traced_layer.set_strategy(1, fluid.ExecutionStrategy())
|
||||
self.assertEqual(
|
||||
"The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received <{} 'int'>.".
|
||||
format(self.type_str), str(e.exception))
|
||||
|
||||
with self.assertRaises(AssertionError) as e:
|
||||
traced_layer.set_strategy(fluid.BuildStrategy(), False)
|
||||
self.assertEqual(
|
||||
"The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received <{} 'bool'>.".
|
||||
format(self.type_str), str(e.exception))
|
||||
|
||||
traced_layer.set_strategy(build_strategy=fluid.BuildStrategy())
|
||||
traced_layer.set_strategy(exec_strategy=fluid.ExecutionStrategy())
|
||||
traced_layer.set_strategy(fluid.BuildStrategy(),
|
||||
fluid.ExecutionStrategy())
|
||||
|
||||
def test_save_inference_model_err(self):
|
||||
with fluid.dygraph.guard():
|
||||
in_x = fluid.dygraph.to_variable(
|
||||
np.random.random((self.batch_size, self.feature_size)).astype(
|
||||
'float32'))
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
self.layer, [in_x])
|
||||
|
||||
dirname = './traced_layer_err_msg'
|
||||
with self.assertRaises(TypeError) as e:
|
||||
traced_layer.save_inference_model([0])
|
||||
self.assertEqual(
|
||||
"The type of 'dirname' in fluid.dygraph.jit.TracedLayer.save_inference_model must be <{} 'str'>, but received <{} 'list'>. ".
|
||||
format(self.type_str, self.type_str), str(e.exception))
|
||||
with self.assertRaises(TypeError) as e:
|
||||
traced_layer.save_inference_model(dirname, [0], [None])
|
||||
self.assertEqual(
|
||||
"The type of 'each element of fetch' in fluid.dygraph.jit.TracedLayer.save_inference_model must be <{} 'int'>, but received <{} 'NoneType'>. ".
|
||||
format(self.type_str, self.type_str), str(e.exception))
|
||||
with self.assertRaises(TypeError) as e:
|
||||
traced_layer.save_inference_model(dirname, [0], False)
|
||||
self.assertEqual(
|
||||
"The type of 'fetch' in fluid.dygraph.jit.TracedLayer.save_inference_model must be (<{} 'NoneType'>, <{} 'list'>), but received <{} 'bool'>. ".
|
||||
format(self.type_str, self.type_str, self.type_str),
|
||||
str(e.exception))
|
||||
with self.assertRaises(TypeError) as e:
|
||||
traced_layer.save_inference_model(dirname, [None], [0])
|
||||
self.assertEqual(
|
||||
"The type of 'each element of feed' in fluid.dygraph.jit.TracedLayer.save_inference_model must be <{} 'int'>, but received <{} 'NoneType'>. ".
|
||||
format(self.type_str, self.type_str), str(e.exception))
|
||||
with self.assertRaises(TypeError) as e:
|
||||
traced_layer.save_inference_model(dirname, True, [0])
|
||||
self.assertEqual(
|
||||
"The type of 'feed' in fluid.dygraph.jit.TracedLayer.save_inference_model must be (<{} 'NoneType'>, <{} 'list'>), but received <{} 'bool'>. ".
|
||||
format(self.type_str, self.type_str, self.type_str),
|
||||
str(e.exception))
|
||||
|
||||
traced_layer.save_inference_model(dirname)
|
||||
|
||||
def _train_simple_net(self):
|
||||
layer = None
|
||||
with fluid.dygraph.guard():
|
||||
layer = SimpleFCLayer(self.feature_size, self.batch_size,
|
||||
self.fc_size)
|
||||
optimizer = fluid.optimizer.SGD(learning_rate=1e-3,
|
||||
parameter_list=layer.parameters())
|
||||
|
||||
for i in range(5):
|
||||
in_x = fluid.dygraph.to_variable(
|
||||
np.random.random((self.batch_size, self.feature_size))
|
||||
.astype('float32'))
|
||||
dygraph_out = layer(in_x)
|
||||
loss = fluid.layers.reduce_mean(dygraph_out)
|
||||
loss.backward()
|
||||
optimizer.minimize(loss)
|
||||
return layer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue